1887

Abstract

A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6, was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family . Its closest relatives are DJC (96.76% similarity) and K13M18 (96.76%), followed by DRYC-M-16 (96.69 %), JA983 (96.62 %), RCRI19 (96.47 %) and JA192 (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18–28°C in the presence of 2–4 % (w/v) NaCl. Cells of DMG-N-6 were motile by a single subpolar flagellum. Bacteriochlorophyll was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C 7. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6 had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6 (=DSM 108208=NCAIM B.02645) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed.

Funding
This study was supported by the:
  • Nemzeti Kutatási, Fejlesztési és Innovaciós Alap (Award TKP2020-IKA-05)
    • Principle Award Recipient: ErikaTóth
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005219
2022-01-31
2024-04-26
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA. Order VIII. Oceanospirillales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology:, 2nd ed. New York: Springer; 2005 p 270
    [Google Scholar]
  2. Kim J-H, Kanjanasuntree R, Kim D-H, Lee J-S, Sukhoom A et al. Arenibacillus arenosus gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from sea sand. Int J Syst Evol Microbiol 2019; 69:153–158 [View Article]
    [Google Scholar]
  3. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In The Prokaryotes, 4th ed. Berlin: Springer-Verlag; 2014 pp 439–512 [View Article]
    [Google Scholar]
  4. Foesel BU, Drake HL, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Syst Appl Microbiol 2011; 34:498–502 [View Article]
    [Google Scholar]
  5. Suresh G, Lodha TD, Indu B, Sasikala C, Ramana CV. Taxogenomics resolves conflict in the genus Rhodobacter: a two and half decades pending thought to reclassify the genus Rhodobacter. Front Microbiol 2019; 10:2480 [View Article]
    [Google Scholar]
  6. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  7. Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter Clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12:683109 [View Article] [PubMed]
    [Google Scholar]
  8. Dinka M, Ágoston-Szabó E, Berczik Á, Kutrucz G. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertõ/Neusiedler See. Limnologica 2004; 34:48–56 [View Article]
    [Google Scholar]
  9. Szuróczki S, Abbaszade G, Szabó A, Bóka K, Schumann P et al. Phragmitibacter flavus gen. nov., sp. nov. a new member of the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 2020; 70:2108–2114 [View Article]
    [Google Scholar]
  10. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article] [PubMed]
    [Google Scholar]
  11. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64:839–845 [View Article] [PubMed]
    [Google Scholar]
  12. Tóth E, Szuróczki S, Kéki Z, Kosztik J, Makk J et al. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 2017; 67:1033–1038 [View Article] [PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  15. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  20. Swofford DL, Begle PD. PAUP: Phylogenetic Analysis Using Parsimony Washington, DC: Smithsonian Institution, Laboratory of Molecular Systematics, Version 3.1; 1993 pp 36–37
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  22. Phurbu D, Wang H, Tang Q, Lu H, Zhu H et al. Tabrizicola alkalilacus sp. nov., isolated from alkaline Lake Dajiaco on the Tibetan Plateau. Int J Syst Evol Microbiol 2019; 69:3420–3425 [View Article] [PubMed]
    [Google Scholar]
  23. Han JE, Kang W, Lee J-Y, Sung H, Hyun D-W et al. Tabrizicola piscis sp. nov., isolated from the intestinal tract of a Korean indigenous freshwater fish, Acheilognathus koreensis. Int J Syst Evol Microbiol 2020; 70:2305–2311 [View Article] [PubMed]
    [Google Scholar]
  24. Park C-Y, Chun S-J, Jin C, Le VV, Cui Y et al. Tabrizicola algicola sp. nov. isolated from culture of microalga Ettlia sp. Int J Syst Evol Microbiol 2020; 70:6133–6141 [View Article] [PubMed]
    [Google Scholar]
  25. Liu Z-X, Dorji P, Liu H-C, Li A-H, Zhou Y-G. Tabrizicola sediminis sp. nov., one aerobic anoxygenic photoheterotrophic bacteria from sediment of saline lake. Int J Syst Evol Microbiol 2019; 69:2565–2570 [View Article] [PubMed]
    [Google Scholar]
  26. Sheu C, Li ZH, Sheu SY, Yang CC, Chen WM. Tabrizicola oligotrophica sp. nov. and rhodobacter tardus sp. nov., two new species of bacteria belonging to the family Rhodobacteracea. Int J Syst Evol Microbiol 2020; 70:6266–6283
    [Google Scholar]
  27. Suresh G, Kumar D, Krishnaiah A, Sasikala C, Ramana C. Rhodobacter sediminicola sp. nov., isolated from a fresh water pond. Int J Syst Evol Microbiol 2020; 70:1294–1299 [View Article] [PubMed]
    [Google Scholar]
  28. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie van Leeuwenhoek 2013; 104:1205–1215 [View Article]
    [Google Scholar]
  29. Girija KR, Sasikala C, Ramana CV, Spröer C, Takaichi S et al. Rhodobacter johrii sp. nov., an endospore-producing cryptic species isolated from semi-arid tropical soils. Int J Syst Evol Microbiol 2010; 60:2099–2107 [View Article] [PubMed]
    [Google Scholar]
  30. van Niel CB. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 1944; 8:1–118 [View Article] [PubMed]
    [Google Scholar]
  31. Zhang Y, Jiang F, Chang X, Qiu X, Ren L et al. Pseudorhodobacter collinsensis sp. nov., isolated from a till sample of an icecap front. Int J Syst Evol Microbiol 2016; 66:178–183 [View Article] [PubMed]
    [Google Scholar]
  32. Lee YM, Yang JY, Baek K, Han SJ, Shin SC et al. Pseudorhodobacter psychrotolerans sp. nov., a psychrotolerant bacterium isolated from terrestrial soil, and emended description of the genus Pseudorhodobacter. Int J Syst Evol Microbiol 2016; 66:1068–1073 [View Article] [PubMed]
    [Google Scholar]
  33. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  34. Andrews S. FastQC: a quality control tool for high throughputsequence data Cambridge, UK: Babraham Institute; 2010
  35. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  36. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  37. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  38. Wu YW. ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics 2018; 19:7–16 [View Article] [PubMed]
    [Google Scholar]
  39. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  40. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  41. Rodriguez RL, Konstantinidis K. The enveomics collection: a toolboxfor specialized analyses of microbial genomes and metagenomes. Peer J Preprintse1900v1 2016; 4 [preprint]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  43. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  44. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  45. Tarhriz V, Hirose S, Fukushima S-I, Hejazi MA, Imhoff JF et al. Emended description of the genus Tabrizicola and the species Tabrizicola aquatica as aerobic anoxygenic phototrophic bacteria. Antonie Van Leeuwenhoek 2019; 112:1169–1175 [View Article] [PubMed]
    [Google Scholar]
  46. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article] [PubMed]
    [Google Scholar]
  47. Tóth E, Szuróczki S, Kéki Z, Bóka K, Szili-Kovács T et al. Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 2017; 67:4565–4571 [View Article] [PubMed]
    [Google Scholar]
  48. Ko D-J, Kim J-S, Park D-S, Lee D-H, Heo S-Y et al. Tabrizicola fusiformis sp. nov., isolated from an industrial wastewater treatment plant. Int J Syst Evol Microbiol 2018; 68:1800–1805 [View Article] [PubMed]
    [Google Scholar]
  49. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, p. irgensii sp. nov., p. franzmannii sp. nov. and p. filamentus sp. nov., gas vacuolate polar marine bacteria of the cytophaga-flavobacterium-bacteroides group and reclassification of flectobacillus glomeratus’ as polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48:223–235
    [Google Scholar]
  50. Farris JS. Estimating Phylogenetic Trees from Distance Matrices. The American Naturalist 1972; 106:645–668 [View Article]
    [Google Scholar]
  51. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  52. Eckersley K, Dow CS. Rhodopseudomonas blastica sp.nov.: a member of the Rhodospirillaceae. Microbiology 1980; 119:465–473 [View Article]
    [Google Scholar]
  53. Hiraishi A, Muramatsu K, Ueda Y. Molecular genetic analyses of Rhodobacter azotoformans sp. nov. and related species of phototrophic bacteria. Systematic and Applied Microbiology 1996; 19:168–177 [View Article]
    [Google Scholar]
  54. Anil Kumar P, Srinivas TNR, Sasikala C, Ramana CV. Rhodobacter changlensis sp. nov., a psychrotolerant, phototrophic alphaproteobacterium from the Himalayas of India. Int J Syst Evol Microbiol 2007; 57:2568–2571 [View Article] [PubMed]
    [Google Scholar]
  55. Srinivas TNR, Anil Kumar P, Sasikala C, Spröer C, Ramana CV. Rhodobacter ovatus sp. nov., a phototrophic alphaproteobacterium isolated from a polluted pond. Int J Syst Evol Microbiol 2008; 58:1379–1383 [View Article] [PubMed]
    [Google Scholar]
  56. Suresh G, Sasikala C, Ramana CV. Reclassification of Gemmobacter changlensis to a new genus as Cereibacter changlensis gen. nov., comb. nov. Int J Syst Evol Microbiol 2015; 65:794–798 [View Article] [PubMed]
    [Google Scholar]
  57. Li A-H, Liu H-C, Hou W-G, Zhou Y-G. Pseudorhodobacter sinensis sp. nov. and Pseudorhodobacter aquaticus sp. nov., isolated from crater lakes. Int J Syst Evol Microbiol 2016; 66:2819–2824 [View Article]
    [Google Scholar]
  58. Szuróczki S. Fertoeibacter niger gen. nov., sp. nov. a novel alkaliphilic bacterium of the family Rhodobacteraceae. Int J Syst Evol Microbiol 2021
    [Google Scholar]
  59. Imhoff JF, TRuPER HG, Pfennig N. Rearrangement of the Species and Genera of the Phototrophic “Purple Nonsulfur Bacteria.”. Int J Syst Bacteriol 1984; 34:340–343 [View Article]
    [Google Scholar]
  60. Arunasri K, Venkata Ramana V, Spröer C, Sasikala C, Ramana CV. Rhodobacter megalophilus sp. nov., a phototroph from the Indian Himalayas possessing a wide temperature range for growth. Int J Syst Evol Microbiol 2008; 58:1792–1796 [View Article] [PubMed]
    [Google Scholar]
  61. Venkata Ramana V, Sasikala C, Ramana CV. Rhodobacter maris sp. nov., a phototrophic alphaproteobacterium isolated from a marine habitat of India. Int J Syst Evol Microbiol 2008; 58:1719–1722 [View Article] [PubMed]
    [Google Scholar]
  62. Venkata Ramana V, Anil Kumar P, Srinivas TNR, Sasikala C, Ramana CV. Rhodobacter aestuarii sp. nov., a phototrophic alphaproteobacterium isolated from an estuarine environment. Int J Syst Evol Microbiol 2009; 59:1133–1136 [View Article] [PubMed]
    [Google Scholar]
  63. Raj PS, Ramaprasad EVV, Vaseef S, Sasikala C, Ramana CV. Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol 2013; 63:181–186 [View Article] [PubMed]
    [Google Scholar]
  64. Subhash Y, Lee SS. Rhodobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:2965–2970 [View Article] [PubMed]
    [Google Scholar]
  65. Suresh G, Sailaja B, Ashif A, Dave BP, Sasikala C et al. Description of Rhodobacter azollae sp. nov. and Rhodobacter lacus sp. nov. Int J Syst Evol Microbiol 2017; 67:3289–3295 [View Article] [PubMed]
    [Google Scholar]
  66. Gandham S, Lodha T, Chintalapati S, Chintalapati VR. Rhodobacter alkalitolerans sp. nov., isolated from an alkaline brown pond. Arch Microbiol 2018; 200:1487–1492 [View Article] [PubMed]
    [Google Scholar]
  67. Khan IU, Habib N, Xiao M, Li M-M, Xian W-D et al. Rhodobacter thermarum sp. nov., a novel phototrophic bacterium isolated from sediment of a hot spring. Antonie van Leeuwenhoek 2019; 112:867–875 [View Article] [PubMed]
    [Google Scholar]
  68. Xian W-D, Liu Z-T, Li M-M, Liu L, Ming Y-Z et al. Rhodobacter flagellatus sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2020; 70:1541–1546 [View Article] [PubMed]
    [Google Scholar]
  69. Li AH, Zhou YG. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. Int J Syst Evol Microbiol 2015; 65:1199–1206 [View Article] [PubMed]
    [Google Scholar]
  70. Pan X-C, Geng S, Lv X-L, Mei R, Jiangyang J-H et al. Defluviimonas alba sp. nov., isolated from an oilfield. Int J Syst Evol Microbiol 2015; 65:1805–1811 [View Article]
    [Google Scholar]
  71. Liu Y, Pei T, Zhang J, Yang F, Zhu H. Proposal for transfer of Defluviimonas alba to the genus Frigidibacter as Frigidibacter mobilis nom. nov. Int J Syst Evol Microbiol 2020; 70:3553–3558 [View Article] [PubMed]
    [Google Scholar]
  72. Zhang Y-X, Li F-L, Ma S-C, Zheng G-D, Chen W-F et al. Frigidibacter oleivorans sp. nov., isolated from a deep well with oil reservoir water. Int J Syst Evol Microbiol 2020; 70:4339–4344 [View Article] [PubMed]
    [Google Scholar]
  73. Lucena T, Ruvira MA, Garay E, Macián MC, Arahal DR et al. Actibacterium mucosum gen. nov., sp. nov., a marine alphaproteobacterium from Mediterranean seawater. Int J Syst Evol Microbiol 2012; 62:2858–2864 [View Article]
    [Google Scholar]
  74. Li G, Lai Q, Sun F, Du Y, Liu X et al. Actibacterium atlanticum sp. nov., isolated from surface seawater of the Atlantic Ocean. Antonie van Leeuwenhoek 2014; 106:325–330 [View Article] [PubMed]
    [Google Scholar]
  75. Park S, Park J-M, Kang C-H, Yoon J-H. Confluentimicrobium lipolyticum gen. nov., sp. nov., a novel lipolytic alphaproteobacterium isolated from the junction between the ocean and a freshwater spring, and emended description of Actibacterium mucosum Lucena et al. 2012. Antonie van Leeuwenhoek 2014; 106:969–977 [View Article] [PubMed]
    [Google Scholar]
  76. Jeong HI, Jin HM, Jeon CO. Confluentimicrobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from sea-tidal-flat sediment, and emended description of the genus Confluentimicrobium Park et al. 2015. Int J Syst Evol Microbiol 2015; 65:4191–4195 [View Article]
    [Google Scholar]
  77. Lin S-Y, Young C-C, Hameed A, Liu Y-C, Hsu Y-H et al. Actibacterium ureilyticum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:2769–2773 [View Article] [PubMed]
    [Google Scholar]
  78. Guo L-L, Wu Y-H, Xu X-W, Huang C-J, Xu Y-Y et al. Actibacterium pelagium sp. nov., a novel alphaproteobacterium, and emended description of the genus Actibacterium. Int J Syst Evol Microbiol 2017; 67:5080–5086 [View Article] [PubMed]
    [Google Scholar]
  79. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 1993; 43:363–367 [View Article] [PubMed]
    [Google Scholar]
  80. Zhang Y-X, Li X, Li F-L, Ma S-C, Zheng G-D et al. Paracoccus alkanivorans sp. nov., isolated from a deep well with oil reservoir water. Int J Syst Evol Microbiol 2020; 70:2312–2317 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005219
Loading
/content/journal/ijsem/10.1099/ijsem.0.005219
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error