1887

Abstract

An aerobic, Gram-stain-negative, rod-shaped and non-motile strain (XY-359) was isolated from the mouth of a marine invertebrate species from the South China Sea. It grew at pH 6.0–8.5 (optimum, pH 7.5), at 15−37 °C (optimum, 30 °C) and in the presence of 0.5–4.5 % (w/v) NaCl (optimum, 2.5 %). It could not hydrolyse Tweens 20, 40, 60 or 80 and no flexirubin-type pigments were produced. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid, six unidentified phospholipids and two unidentified polar lipids. The major fatty acids were iso-C 3-OH, iso-C G and iso-C 3-OH. The respiratory quinone was MK-6. Strain XY-359 showed the greatest degree of 16S rRNA sequence similarity to AsT0115 (96.54 %), followed by DSM 22638 (96.27 %). Phylogenetic analysis based on 16S rRNA gene sequences and 31 core genes indicated that strain XY-359 belongs to the genus . The genome size of strain XY-359 was 4 207 872 bp, with 39.1 mol% of DNA G+C content. The average nucleotide identity and digital DNA–DNA hybridization values between strain XY-359 and AsT0115 were 74.58 % and 18.5 %, respectively, and those between strain XY-359 and DSM 22638 were 74.2 % and 18.3 %. The combined phenotypic, chemotaxonomic and phylogenetic data suggest that strain XY-359 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XY-359 (=MCCC 1K03658 =KCTC 72218). Moreover, based on the proposal of nesting and within by García (Validation List No. 193) and the analyses of phylogenetic trees and average amino acid identities in this study, the transfers of , and to the genus as comb. nov., nom. nov. and nom. nov., respectively, are proposed, with an emended description of the genus .

Funding
This study was supported by the:
  • the Scientific and Technical Innovation Council of Shenzhen (Award JCYJ20180305123932369)
    • Principle Award Recipient: NotApplicable
  • the Shenzhen Science and Technology Application Demonstration Project (Award KJYY20180201180253571)
    • Principle Award Recipient: ApplicableNot
  • the 62st-class General Financial Grant from the China Postdoctoral Science Foundation (Award No. 2017M622754)
    • Principle Award Recipient: NotApplicable
  • Scientific and Technical Innovation Council of Shenzhen (Award KQJSCX20170727101743831)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004982
2021-09-13
2024-04-26
Loading full text...

Full text loading...

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article] [PubMed]
    [Google Scholar]
  2. Yoon JH, Lee MH, Oh TK, Park YH. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2005; 55:1015–1019 [View Article] [PubMed]
    [Google Scholar]
  3. Hwang CY, Kim MH, Bae GD, Zhang GI, Kim YH et al. Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2009; 59:1856–1861 [View Article] [PubMed]
    [Google Scholar]
  4. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  5. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2020; 70:2960–2966 [View Article] [PubMed]
    [Google Scholar]
  6. Arun AB, Chen WM, Lai WA, Chao JH, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009; 59:2738–2742 [View Article] [PubMed]
    [Google Scholar]
  7. Yoon JH, Kang SJ, Jung YT, Oh TK. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008; 58:1603–1607 [View Article] [PubMed]
    [Google Scholar]
  8. Lee S-Y, Park S, Oh T-K, Yoon J-H. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1134–1139 [View Article] [PubMed]
    [Google Scholar]
  9. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013; 63:2672–2677 [View Article] [PubMed]
    [Google Scholar]
  10. Kim D, Yoo Y, Khim JS, Yang D, Pathiraja D et al. Muricauda ochracea sp. nov., isolated from a tidal flat in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:4555–4561 [View Article] [PubMed]
    [Google Scholar]
  11. Li G, Lai Q, Yan P, Shao Z. Roseovarius amoyensis sp. nov. and Muricauda amoyensis sp. nov., isolated from the Xiamen coast. Int J Syst Evol Microbiol 2019; 69:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang Z, Gao X, Qiao Y, Wang Y, Zhang XH. Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015; 65:4087–4092 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang X, Liu X, Lai Q, Du Y, Sun F et al. Muricauda indica sp. nov., isolated from deep sea water. Int J Syst Evol Microbiol 2018; 68:881–885 [View Article] [PubMed]
    [Google Scholar]
  14. Dang YR, Sun YY, Sun LL, Yuan XX, Li Y et al. Muricauda nanhaiensis sp. nov., isolated from seawater of the South China Sea. Int J Syst Evol Microbiol 2019; 69:2089–2094 [View Article] [PubMed]
    [Google Scholar]
  15. Guo LL, Wu D, Sun C, Cheng H, Xu XW et al. Muricauda maritima sp. nov., Muricauda aequoris sp. nov. and Muricauda oceanensis sp. nov., three marine bacteria isolated from seawater. Int J Syst Evol Microbiol 2020; 70:6240–6250 [View Article] [PubMed]
    [Google Scholar]
  16. Zhang Y, Gao Y, Pei J, Cao J, Xie Z et al. Muricauda hadalis sp. nov., a novel piezophile isolated from hadopelagic water of the Mariana Trench and reclassification of Muricauda antarctica as a later heterotypic synonym of Muricauda teanensis. Int J Syst Evol Microbiol 2020; 70:4315–4320 [View Article] [PubMed]
    [Google Scholar]
  17. Choi S, Lee JH, Kang JW, Choe HN, Seong CN. Flagellimonas aquimarina sp. nov., and transfer of Spongiibacterium flavum Yoon and Oh 2012 and S. pacificum Gao et al. 2015 to the genus Flagellimonas Bae et al. 2007 as Flagellimonas flava comb. nov. and F. pacifica comb. nov., respectively. Int J Syst Evol Microbiol 2018; 68:3266–3272 [View Article] [PubMed]
    [Google Scholar]
  18. Yang C, Li Y, Guo Q, Lai Q, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2320–2325 [View Article] [PubMed]
    [Google Scholar]
  19. Liu SQ, Sun QL, Sun YY, Yu C, Sun L. Muricauda iocasae sp. nov., isolated from deep sea sediment of the South China Sea. Int J Syst Evol Microbiol 2018; 68:2538–2544 [View Article] [PubMed]
    [Google Scholar]
  20. Dong B, Zhu S, Chen T, Ren N, Chen X et al. Muricauda oceani sp. nov., isolated from the East Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:3839–3844 [View Article] [PubMed]
    [Google Scholar]
  21. Zhu S, Xue Z, Huang Y, Chen X, Ren N et al. Muricauda sediminis sp. nov., isolated from western Pacific Ocean sediment. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  22. Bae SS, Kwon KK, Yang SH, Lee H-S, Kim S-J et al. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 2007; 57:1050–1054 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon B-J, Oh D-C. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas. Int J Syst Evol Microbiol 2012; 62:1158–1164 [View Article] [PubMed]
    [Google Scholar]
  24. Park JS. Muricauda hymeniacidonis sp. nov., isolated from sponge of Hymeniacidon sinapium. Int J Syst Evol Microbiol 2019; 69:3800–3805 [View Article] [PubMed]
    [Google Scholar]
  25. Su Y, Yang X, Wang Y, Liu Y, Ren Q et al. Muricauda marina sp. nov., isolated from marine snow of Yellow Sea. Int J Syst Evol Microbiol 2017; 67:2446–2451 [View Article] [PubMed]
    [Google Scholar]
  26. Chen Y, Hu Z, Wang H. Muricauda amphidinii sp. nov., a novel marine bacterium isolated from the phycosphere of dinoflagellate Amphidinium carterae. Int J Syst Evol Microbiol 2019; 71:004764 [View Article] [PubMed]
    [Google Scholar]
  27. Liu L, Yu M, Zhou S, Fu T, Sun W et al. Muricauda alvinocaridis sp. nov., isolated from shrimp gill from the Okinawa Trough. Int J Syst Evol Microbiol 2020; 70:1666–1671 [View Article] [PubMed]
    [Google Scholar]
  28. Kim J, Kim KH, Chun BH, Khan SA, Jeon CO. Flagellimonas algicola sp. nov., isolated from a marine red alga, Asparagopsis taxiformis. Curr Microbiol 2020; 77:294–299 [View Article] [PubMed]
    [Google Scholar]
  29. Kang H, Kim H, Cha I, Joh K. Flagellimonas maritima sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:187–192 [View Article] [PubMed]
    [Google Scholar]
  30. Hogg JC, Lehane MJ. Identification of bacterial species associated with the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA. Appl Environ Microbiol 1999; 65:4227–4229 [View Article] [PubMed]
    [Google Scholar]
  31. Xu Y, Li Q, Tian R, Lai Q, Zhang Y. Pseudovibrio hongkongensis sp. nov., isolated from a marine flatworm. Antonie van Leeuwenhoek 2015; 108:127–132 [View Article] [PubMed]
    [Google Scholar]
  32. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  33. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  34. Zhang W, Ding W, Li YX, Tam C, Bougouffa S et al. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat Commun 2019; 10:517 [View Article] [PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  37. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  38. Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol 2008; 9:R151 [View Article] [PubMed]
    [Google Scholar]
  39. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article] [PubMed]
    [Google Scholar]
  40. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 1997; 13:555–556 [View Article]
    [Google Scholar]
  41. Pitt A, Schmidt J, Lang E, Whitman WB, Woyke T et al. Polynucleobacter meluiroseus sp. nov., a bacterium isolated from a lake located in the mountains of the Mediterranean island of Corsica. Int J Syst Evol Microbiol 2018; 68:1975–1985 [View Article] [PubMed]
    [Google Scholar]
  42. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  43. Yin Q, Zhang L, Song Z-M, Wu Y, Hu Z-L et al. Euzebya rosea sp. nov., a rare actinobacterium isolated from the East China Sea and analysis of two genome sequences in the genus Euzebya. Int J Syst Evol Microbiol 2018; 68:2900–2905 [View Article] [PubMed]
    [Google Scholar]
  44. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118
    [Google Scholar]
  45. Jeoung JH, Goetzl S, Hennig SE, Fesseler J, Wörmann C et al. The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation. Biol Chem 2014; 395:545–558 [View Article] [PubMed]
    [Google Scholar]
  46. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  47. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  48. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  49. Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr 20211–26 [View Article] [PubMed]
    [Google Scholar]
  50. Gerhardt P, Murray RGE, Krieg NR, Wood WA. Methods for General and Molecular Bacteriology: American Society for Microbiology; 1994
    [Google Scholar]
  51. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017; 67:909–913 [View Article] [PubMed]
    [Google Scholar]
  52. Xu Y, Li Q, Tian RM, Lai QL, Zhang Y. Pseudovibrio hongkongensis sp. nov., isolated from a marine flatworm. Antonie van Leeuwenhoek 2015; 108:127–132 [View Article]
    [Google Scholar]
  53. Dong XC. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  54. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of F, Cytophaga-Like Bacteria Of The International Committee On Systematics Of P. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  55. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE, USA: Microbial ID, Inc; 1990 pp 1–6
    [Google Scholar]
  56. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  57. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiology Letters 1990; 66:199–202
    [Google Scholar]
  58. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  59. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  60. Kates M. Techniques of Lipidology, 2 rev ed. Netherlands: Elsevier; 1986
    [Google Scholar]
  61. Gao X, Zhang Z, Dai X, Zhang X-H. Spongiibacterium pacificum sp. nov., isolated from seawater of South Pacific Gyre and emended description of the genus Spongiibacterium. Int J Syst Evol Microbiol 2015; 65:154–158 [View Article] [PubMed]
    [Google Scholar]
  62. Montero-Calasanz Mdel C, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 2014; 37:342–350 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004982
Loading
/content/journal/ijsem/10.1099/ijsem.0.004982
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error