1887

Abstract

A novel mesophilic and aerobic ammonia-oxidizing archaeon of the phylum , strain NM25, was isolated from coastal eelgrass zone sediment sampled in Shimoda (Japan). The cells were rod-shaped with an S-layer cell wall. The temperature range for growth was 20–37 °C, with an optimum at 30 °C. The pH range for growth was pH 6.1–7.7, with an optimum at pH 7.1. The salinity range for growth was 5–40 %, with an optimum range of 15–32 %. Cells obtained energy from ammonia oxidation and used bicarbonate as a carbon source. Utilization of urea was not observed for energy generation and growth. Strain NM25 required a hydrogen peroxide scavenger, such as α-ketoglutarate, pyruvate or catalase, for sustained growth on ammonia. Growth of strain NM25 was inhibited by addition of low concentrations of some organic compounds and organic mixtures, including complete inhibition by glycerol, peptone and yeast extract. Phylogenetic analysis of four concatenated housekeeping genes (16S rRNA, , and ) and concatenated AmoA, AmoB, AmoC amino acid sequences indicated that the isolate is similar to members of the genus . The closest relative is PS0 with sequence similarities of 99.5 % for the 16S rRNA gene and 97.2 % for the gene. Genome relatedness between strain NM25 and PS0 was assessed by average nucleotide identity and digital DNA–DNA hybridization, giving results of 85.4 and 40.2 %, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strain NM25 represents a novel species of the genus , for which the name sp. nov, is proposed. The type strain is NM25 (=NBRC 111181=ATCC TSD-147).

Funding
This study was supported by the:
  • Dimensions of Biodiversity Program (Award OCE-1046017)
    • Principle Award Recipient: DavidA. Stahl
  • United States National Science Foundation (Award MCB-0604448)
    • Principle Award Recipient: DavidA. Stahl
  • JSPS (Award 21770028)
    • Principle Award Recipient: TatsunoriNakagawa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004961
2021-08-18
2024-04-27
Loading full text...

Full text loading...

References

  1. Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 2012; 66:83–101 [View Article] [PubMed]
    [Google Scholar]
  2. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009; 461:976–979 [View Article] [PubMed]
    [Google Scholar]
  3. Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM et al. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Natl Acad Sci USA 2006; 103:6442–6447 [View Article] [PubMed]
    [Google Scholar]
  4. Hansman RL, Griffin S, Watson JT, Druffel ERM, Ingalls AE et al. The radiocarbon signature of microorganisms in the mesopelagic ocean. Proc Natl Acad Sci USA 2009; 106:6513–6518 [View Article] [PubMed]
    [Google Scholar]
  5. Bergauer K, Sintes E, van Bleijswijk J, Witte H, Herndl GJ. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic’s interior. FEMS Microbiol Ecol 2013; 84:461–473 [View Article] [PubMed]
    [Google Scholar]
  6. Santoro AE, Buchwald C, McIlvin MR, Casciotti KL. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 2011; 333:1282–1285 [View Article] [PubMed]
    [Google Scholar]
  7. Löscher CR, Kock A, Könneke M, LaRoche J, Bange HW et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 2012; 9:2419–2429 [View Article]
    [Google Scholar]
  8. Mosier AC, Francis CA. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 2008; 10:3002–3016 [View Article] [PubMed]
    [Google Scholar]
  9. Santoro AE, Francis CA, De Sieyes NR, Boehm AB. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 2008; 10:1068–1079 [View Article] [PubMed]
    [Google Scholar]
  10. Magalhães CM, Machado A, Bordalo AA. Temporal variability in the abundance of ammonia-oxidizing bacteria vs. archaea in sandy sediments of the Douro River Estuary. Aquat Microb Ecol 2009; 56:13–23 [View Article]
    [Google Scholar]
  11. Bernhard AE, Bollmann A. Estuarine nitrifiers: new players, patterns and processes. Estuar Coast Shelf Sci 2010; 88:1–11 [View Article]
    [Google Scholar]
  12. Wankel SD, Mosier AC, Hansel CM, Paytan A, Francis CA. Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California. Appl Environ Microbiol 2011; 77:269–280 [View Article] [PubMed]
    [Google Scholar]
  13. Zheng Y, Hou L, Newell S, Liu M, Zhou J et al. Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze Estuary. Appl Environ Microbiol 2014; 80:408–419 [View Article] [PubMed]
    [Google Scholar]
  14. Li J, Nedwell DB, Beddow J, Dumbrell AJ, McKew BA et al. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not archaea dominate N cycling in the Colne Estuary, United Kingdom. Appl Environ Microbiol 2015; 81:159–165 [View Article] [PubMed]
    [Google Scholar]
  15. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005; 437:543–546 [View Article] [PubMed]
    [Google Scholar]
  16. Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA 2014; 111:12504–12509 [View Article] [PubMed]
    [Google Scholar]
  17. Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminogenes gen. nov., sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureaphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol 2017; 67:5067–5079 [View Article] [PubMed]
    [Google Scholar]
  18. Agogué H, Brink M, Dinasquet J, Herndl GJ. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 2008; 456:788–791 [View Article] [PubMed]
    [Google Scholar]
  19. Smith JM, Damashek J, Chavez FP, Francis CA. Factors influencing nitrification rates and the abundance and transcriptional activity of ammonia-oxidizing microorganisms in the dark northeast Pacific Ocean. Limnol Oceanogr 2016; 61:596–609 [View Article]
    [Google Scholar]
  20. Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 2011; 108:8420–8425 [View Article] [PubMed]
    [Google Scholar]
  21. Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW et al. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol Ecol 2014; 89:542–552 [View Article] [PubMed]
    [Google Scholar]
  22. Kim JG, Park SJ, Sinnighe Damsté JS, Schouten S, Rijpstra WIC et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc Natl Acad Sci USA 2016; 113:7888–7893 [View Article] [PubMed]
    [Google Scholar]
  23. Qin W, Meinhardt KA, Moffett JW, Devol AH, Armbrust EV et al. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environ Microbiol Rep 2017; 9:250–256 [View Article] [PubMed]
    [Google Scholar]
  24. Tolar BB, Powers LC, Miller WL, Wallsgrove NJ, Popp BN et al. Ammonia oxidation in the ocean can be inhibited by nanomolar concentrations of hydrogen peroxide. Front Mar Sci 2016; 3:237 [View Article]
    [Google Scholar]
  25. Horak REA, Qin W, Bertagnolli AD, Nelson A, Heal KR et al. Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnol Oceanogr 2018; 63:741–757 [View Article]
    [Google Scholar]
  26. Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K et al. Enrichment of a novel marine ammonia-oxidizing archaeon from sand of an eelgrass zone. Microbes Environ 2011; 26:23–29 [View Article] [PubMed]
    [Google Scholar]
  27. Ando Y, Nakagawa T, Takahashi R, Yoshihara K, Tokuyama T. Seasonal changes in abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria and their nitrification in sand of an eelgrass zone. Microbes Environ 2009; 24:21–27 [View Article] [PubMed]
    [Google Scholar]
  28. Hewitt EJ, Nicholas DJD. Enzymes of inorganic nitrogen metabolism. Linskens H, Sanwal B, Tracey M. eds In Modern Methods of Plant Analysis Vol 7 Gottingen and Heidelberg: Springer; 1964 pp 167–172
    [Google Scholar]
  29. Muyzer G, Teske A, Wirsen CO, Jannasch HW. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 1995; 164:165–172 [View Article] [PubMed]
    [Google Scholar]
  30. Kaksonen AH, Plumb JJ, Robertson WJ, Spring S, Schumann P et al. Novel thermophilic sulfate-reducing bacteria from a geothermally active underground mine in Japan. Appl Environ Microbiol 2006; 72:3759–3762 [View Article] [PubMed]
    [Google Scholar]
  31. Nakagawa T, Stahl DA. Transcriptional response of the archaeal ammonia oxidizer Nitrosopumilus maritimus to low and environmentally relevant ammonia concentrations. Appl Environ Microbiol 2013; 79:6911–6916 [View Article] [PubMed]
    [Google Scholar]
  32. Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 1988; 6:68–72 [View Article]
    [Google Scholar]
  33. Nakagawa T, Takahashi R. Nitrosomonas stercoris sp. nov. a chemoautotrophic ammonia-oxidizing bacterium tolerant of high ammonium isolated from composted cattle manure. Microbes Environ 2015; 30:221–227 [View Article]
    [Google Scholar]
  34. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  39. Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 2020; 37:1237–1239 [View Article] [PubMed]
    [Google Scholar]
  40. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  41. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article] [PubMed]
    [Google Scholar]
  42. Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M et al. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int J Syst Evol Microbiol 2019; 69:1892–1902 [View Article] [PubMed]
    [Google Scholar]
  43. Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J 2014; 8:1135–1146 [View Article] [PubMed]
    [Google Scholar]
  44. Bernhard AE, Landry ZC, Blevins A, de la Torre JR, Giblin AE et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl Environ Microbiol 2010; 76:1285–1289 [View Article] [PubMed]
    [Google Scholar]
  45. Stieglmeier M, Klingl A, Alves RJE, Rittmann S, Melcher M et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 2014; 64:2738–2752 [View Article] [PubMed]
    [Google Scholar]
  46. Vásquez-Vivar J, Denicola A, Radi R, Augusto O. Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion. Chem Res Toxicol 1997; 10:786–794 [View Article] [PubMed]
    [Google Scholar]
  47. Lemire J, Milandu Y, Auger C, Bignucolo A, Appanna VP et al. Histidine is a source of the antioxidant, α-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiol Lett 2010; 309:170–177 [View Article] [PubMed]
    [Google Scholar]
  48. Qin W, Zheng Y, Zhao F, Wang Y, Urakawa H et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J 2020; 14:2595–2609 [View Article] [PubMed]
    [Google Scholar]
  49. Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 2007; 318:1782–1786 [View Article] [PubMed]
    [Google Scholar]
  50. Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 2014; 111:8239–8244 [View Article] [PubMed]
    [Google Scholar]
  51. Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 2012; 64:955–963 [View Article] [PubMed]
    [Google Scholar]
  52. Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S et al. Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS One 2013; 8:e80835 [View Article] [PubMed]
    [Google Scholar]
  53. Urakawa H, Martens-Habbena W, Stahl DA. Physiology and genomics of ammonia-oxidizing archaea. Ward B, Arp D, Klotz M. eds In Nitrification Washington, DC: ASM Press; 2011 pp 117–155
    [Google Scholar]
  54. Jung MY, Park SJ, Min D, Kim JS, Rijpstra WIC. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl Environ Microbiol 2011; 77:8635–8647 [View Article] [PubMed]
    [Google Scholar]
  55. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 2011; 108:15892–15897 [View Article] [PubMed]
    [Google Scholar]
  56. Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 2016; 10:1051–1063 [View Article] [PubMed]
    [Google Scholar]
  57. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N. The Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine Archaea. Proc Natl Acad Sci USA 2010; 107:8818–8823 [View Article] [PubMed]
    [Google Scholar]
  58. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purpose. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004961
Loading
/content/journal/ijsem/10.1099/ijsem.0.004961
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error