1887

Abstract

species are widely studied due to their utility in bioremediation of sites contaminated with radioactive elements. In the present study, we re-evaluated the taxonomic placement of two species of the genus namely DY59 and ATCC 19172 based on whole genome analyses. The 16S rRNA gene analysis revealed a 99.58% sequence similarity between this species pair that is above the recommended threshold value for species delineation. These two species also clustered together in both the 16S rRNA gene and core genome based phylogenies depicting their close relatedness. Furthermore, more than 98% of genes were shared between s DY59 and ATCC 19172. Interestingly, DY59 and ATCC 19172 shared high genome similarity in different genomic indices. They displayed an average nucleotide identity value of 97.63%, an average amino acid identity value of 97% and a digital DNA–DNA hybridization value equal to 79.50%, all of which are well above the cut-off for species delineation. Altogether, based on these evidences, DY59 and ATCC 19172 constitute a single species. Hence, as per the priority of publication, we propose that Lee 2015 should be reclassified as a later heterotypic synonym of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004879
2021-07-08
2024-05-02
Loading full text...

Full text loading...

References

  1. Brooks BW, Murray RGE. Nomenclature for “Micrococcus radiodurans” and Other Radiation-Resistant Cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., Including Five Species. Int J Syst Bacteriol 1981; 31:353–360
    [Google Scholar]
  2. Parte AC. LPSN — list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Bacteriol 2018; 68:1825–1829
    [Google Scholar]
  3. de Groot A, Chapon V, Servant P, Christen R, Saux MF-L et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara desert. Int J Syst Evol Microbiol 2005; 55:2441–2446 [View Article]
    [Google Scholar]
  4. Hussain F, Khan IU, Habib N, Xian W-D, Hozzein WN et al. Deinococcus saudiensis sp. nov., isolated from desert. Int J Syst Evol Microbiol 2016; 66:5106–5111 [View Article] [PubMed]
    [Google Scholar]
  5. Im W-T, Jung H-M, Ten LN, Kim MK, Bora N et al. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcuscaeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008; 58:2348–2353
    [Google Scholar]
  6. Wang X-P, Li C-M, Yu Y, Li H-R, Du Z-J et al. Deinococcus arcticus sp. nov., isolated from sileneacaulis rhizosphere soil of the arctic tundra. Int J Syst Evol Microbiol 2019; 69:3437–3442
    [Google Scholar]
  7. Lee JJ, Lee HJ, Jang GS, Yu JM, Cha JY et al. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil. J Microbiol 2013; 51:305–311
    [Google Scholar]
  8. Yoo S-H, Weon H-Y, Kim S-J, Kim Y-S, Kim B-Y et al. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010; 60:1191–1195 [View Article]
    [Google Scholar]
  9. Wang W, Mao J, Zhang Z, Tang Q, Xie Y et al. Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 2010; 60:2006–2010 [View Article]
    [Google Scholar]
  10. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 2005; 71:5225–5235 [View Article] [PubMed]
    [Google Scholar]
  11. Davis NS, Silverman GJ, Masurovsky EB. Radiation-resistant, pigmented coccus isolated from haddock tissue. J Bacteriol 1963; 86:294–298 [View Article] [PubMed]
    [Google Scholar]
  12. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 1997; 47:939–947 [View Article] [PubMed]
    [Google Scholar]
  13. Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D. Studies on a radio-resist- ant micrococcus. I, Isolation, morphology, cultural characteristics and resistance to gamma radiation. Food Technol 1956; 10:10575–10577
    [Google Scholar]
  14. Mahato NK, Tripathi C, Verma H, Singh N, Lal R. Draft genome sequence of Deinococcus sp. Strain RL isolated from sediments of a hot water spring. Genome Announc 2014; 2:e00703-14 [View Article]
    [Google Scholar]
  15. Talwar C, Singh AK, Singh DN, Nagar S, Singh Y et al. Draft genome sequence of Deinococcus sp. strain S9, isolated from microbial mat deposits of hot springs located a top the Himalayan Ranges at Manikaran, India. Microbiol Resour Announc 2019; 8:e00316-19 [View Article]
    [Google Scholar]
  16. Gerber E, Bernard R, Castang S, Chabot N, Coze F et al. Deinococcus as new chassis for industrial biotechnology: Biology, physiology and tools. J Appl Microbiol 2015; 119:1–10 [View Article] [PubMed]
    [Google Scholar]
  17. Cox MM, Battista JR. Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 2005; 3:882–892 [View Article] [PubMed]
    [Google Scholar]
  18. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 2001; 65:44–79 [View Article] [PubMed]
    [Google Scholar]
  19. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  21. Mahato NK, Gupta V, Singh P, Kumari R, Verma H et al. Microbial taxonomy in the era of OMICS: Application of DNA sequences, computational tools and techniques. Antonie van Leeuwenhoek 2017; 110:1357–1371 [View Article] [PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  25. Hong S, Farrance CE, Russell A, Yi H. Reclassification of Deinococcus xibeiensis Wang et al. 2010 as a heterotypic synonym of Deinococcus wulumuqiensis Wang et al. 2010. Int J Syst Evol Microbiol 2015; 65:1083–1085 [View Article] [PubMed]
    [Google Scholar]
  26. Kämpfer P. Deinococcus mumbaiensis Shashidhar and Bandekar 2006 is a later heterotypic synonym of Deinococcus ficus Lai et al. 2006. Int J Syst Evol Microbiol 2009; 59:365–366 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing Ezbiocloud: A taxonomically united database of 16s rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  28. Edgar RC. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  30. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  32. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351
    [Google Scholar]
  33. Contreras-Moreira B, Vinuesa P. Get_homologues, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  34. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  36. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  37. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  38. Rodriguez-R LM, Konstantinidis KT. The Enveomics collection: A toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  39. Feng GD, Chen MB, Zhang XJ, Wang DD, Zhu HH. Whole genome sequences reveal the presence of 11 heterotypic synonyms in the genus Sphingobium and emended descriptions of Sphingobium indicum, Sphingobium fuliginis, Sphingobium xenophagum and Sphingobium cupriresistens. Int J Syst Evol Microbiol 2019; 69:2161–2165 [View Article] [PubMed]
    [Google Scholar]
  40. Singh P, Hira P, Rawat CD, Lal R, Sood U. Genome-based reclassification of Amycolatopsis eurytherma as a later heterotypic synonym of Amycolatopsis thermoflava. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  41. Huang C-H, Wang C-L, Liou J-S, Lee A-Y, Blom J et al. Reclassification of Micrococcus aloeverae and Micrococcus yunnanensis as later heterotypic synonyms of Micrococcus luteus. Int J Syst Evol Microbiol 2019; 69:3512–3518 [View Article] [PubMed]
    [Google Scholar]
  42. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  43. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeligar HPR et al. International Code for Nomenclature of Bacteria Bacteriological Code Washington, DC: American Society for Microbiology; 1992
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004879
Loading
/content/journal/ijsem/10.1099/ijsem.0.004879
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error