1887

Abstract

The genera (family ‘’) and (family ) are close relatives within the phylum . Members of these genera are strictly anaerobic, non-spore-forming and short straight rods with diverse phenotypes. Phylogenetic analysis of 16S rRNA genes suggest that splits into a polyphyletic clade. In an effort to ensure that family/genus names represent monophyletic clades, we performed a whole-genome based analysis of the genomes available for the cultured representatives of these genera: four species of and two strains of . A concatenated alignment of 135 shared protein sequences of single-copy core genes present in the included strains indicates that is indeed nested within the clade. Based on their evolutionary relationship, we propose the transfer of to the genus as comb. nov.

Funding
This study was supported by the:
  • Max-Planck-Gesellschaft (Award NA)
    • Principle Award Recipient: RuthLey
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004774
2021-04-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/4/ijsem004774.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004774&mimeType=html&fmt=ahah

References

  1. Lau SKP, McNabb A, Woo GKS, Hoang L, Fung AMY et al. Catabacter hongkongensis gen. nov., sp. nov., isolated from blood cultures of patients from Hong Kong and Canada. J Clin Microbiol 2007; 45:395–401 [View Article][PubMed]
    [Google Scholar]
  2. Lau SKP, Fan RYY, Lo H-W, Ng RHY, Wong SSY et al. High mortality associated with Catabacter hongkongensis bacteremia. J Clin Microbiol 2012; 50:2239–2243 [View Article][PubMed]
    [Google Scholar]
  3. Elsendoorn A, Robert R, Culos A, Roblot F, Burucoa C. Catabacter hongkongensis Bacteremia with fatal septic shock. Emerg Infect Dis 2011; 17:1330–1331 [View Article][PubMed]
    [Google Scholar]
  4. Torri A, Delbianco F, Baccarini FD, Fusari M, Bertini S et al. First report of sepsis due to Catabacter hongkongensis in an Italian patient. New Microbes New Infect 2016; 9:54–55 [View Article][PubMed]
    [Google Scholar]
  5. Choi YJ, Won EJ, Kim SH, Shin MG, Shin JH et al. First case report of bacteremia due to Catabacter hongkongensis in a Korean patient. Ann Lab Med 2017; 37:84–87 [View Article][PubMed]
    [Google Scholar]
  6. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2014; 64:2927–2929 [View Article]
    [Google Scholar]
  7. Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol 2012; 62:144–149 [View Article][PubMed]
    [Google Scholar]
  8. Ndongo S, Khelaifia S, Fournier P-E, Raoult D. Christensenella massiliensis, a new bacterial species isolated from the human gut. New Microbes New Infect 2016; 12:69–70 [View Article][PubMed]
    [Google Scholar]
  9. Ndongo S, Dubourg G, Khelaifia S, Fournier P-E, Raoult D. Christensenella timonensis, a new bacterial species isolated from the human gut. New Microbes New Infect 2016; 13:32–33 [View Article][PubMed]
    [Google Scholar]
  10. Zou Y, Xue W, Lv M, Xiao L, Li X. Christensenella intestinihominis and application thereof. US20190282633A1. 2019 Sep 19.
  11. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  12. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  13. Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol 2019; 17:83 [View Article][PubMed]
    [Google Scholar]
  14. Lang JM, Darling AE, Eisen JA. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 2013; 8:e62510 [View Article][PubMed]
    [Google Scholar]
  15. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ. A complete domain-to-species taxonomy for bacteria and archaea. Nature Biotechnology 2020
    [Google Scholar]
  16. Eren AM, Esen Özcan C, Quince C, Vineis JH, Morrison HG et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 2015; 3:e1319 [View Article][PubMed]
    [Google Scholar]
  17. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  18. Campbell JH, O'Donoghue P, Campbell AG, Schwientek P, Sczyrba A et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci U S A 2013; 110:5540–5545 [View Article][PubMed]
    [Google Scholar]
  19. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article][PubMed]
    [Google Scholar]
  20. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  21. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article][PubMed]
    [Google Scholar]
  22. Guindon S, Delsuc F, Dufayard J-F, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. In Posada D. editor Bioinformatics for DNA Sequence Analysis Totowa, NJ: Humana Press; 2009 pp 113–137
    [Google Scholar]
  23. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  24. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  25. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article][PubMed]
    [Google Scholar]
  26. R Core Team R: a language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing; 2017
    [Google Scholar]
  27. Wickham H. ggplot2: Elegant Graphics for Data Analysis Springer Publishing Company, Incorporated; 2009
    [Google Scholar]
  28. Weimann A, Mooren K, Frank J, Pope PB, Bremges A. From genomes to phenotypes: Traitar. the Microbial Trait Analyzer. mSystems 2016; 1:
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Alonso BL, Irigoyen von Sierakowski A, Sáez Nieto JA, Rosel AB. First report of human infection by Christensenella minuta, a gram-negative, strickly anaerobic rod that inhabits the human intestine. Anaerobe 2017; 44:124–125 [View Article][PubMed]
    [Google Scholar]
  32. Rand KH, Tillan M. Errors in interpretation of Gram stains from positive blood cultures. Am J Clin Pathol 2006; 126:686–690 [View Article][PubMed]
    [Google Scholar]
  33. Ryu J, Kim Y, Lee J, Cho SY, Park TS et al. A Case of Catabacter hongkongensis and Alistipes indistinctus Isolated from Blood Cultures of a Patient with Acute Appendicitis. Lab Med Online 2019; 9:177–180 [View Article]
    [Google Scholar]
  34. Kaden R, Thelander M, Engstrand L, Herrmann B. First case of human bacteraemia by Catabacter hongkongensis in Scandinavia. New Microbes New Infect 2017; 15:6–8 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004774
Loading
/content/journal/ijsem/10.1099/ijsem.0.004774
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error