1887

Abstract

A new member of the family was isolated from the biofilm of a stone at Nordstrand, a peninsula at the German North Sea shore. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain ANORD1 was most closely related to the validly described type strains LNM-20 (97.0 %) and KMM 6386 (96.9 % 16S rRNA gene sequence similarity) and clustered with K17-16 (96.0 %). Strain ANORD1 was determined to be mesophilic, Gram-negative, non-motile and strictly aerobic. Optimal growth was observed at 20–30 °C, within a salinity range of 2–7 % sea salt and from pH 7–10. Like other type strains of the genus , ANORD1 was tested negative for flexirubin-type pigments, while carotenoid-type pigments were detected. The DNA G+C content of strain ANORD1 was 30.6 mol%. The sole respiratory quinone detected was menaquinone 6 (MK-6). The major fatty acids identified were C, iso-C, C ω6 and iso-C 3-OH. Based on the polyphasic approach, strain ANORD1 represents a novel species in the genus , with the name sp. nov. being proposed. The type strain is ANORD1 (=DSM 110039=NCIMB 15081=MTCC 12685).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004290
2020-06-24
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4305.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004290&mimeType=html&fmt=ahah

References

  1. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48 Pt 1:223–235 [View Article][PubMed]
    [Google Scholar]
  2. Park S, Yoon SY, Ha M-J, Yoon J-H. Polaribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:2036–2042 [View Article][PubMed]
    [Google Scholar]
  3. Lee YS, Lee D-H, Kahng H-Y, Sohn SH, Jung JS. Polaribacter gangjinensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:1425–1429 [View Article][PubMed]
    [Google Scholar]
  4. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 2013; 63:1665–1672 [View Article][PubMed]
    [Google Scholar]
  5. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata . Curr Microbiol 2013; 66:16–21 [View Article][PubMed]
    [Google Scholar]
  6. Saha M, Wiese J, Weinberger F, Wahl M. Rapid adaptation to controlling new microbial epibionts in the invaded range promotes invasiveness of an exotic seaweed. J Ecol 2016; 104:969–978 [View Article]
    [Google Scholar]
  7. Reysenbach AL, Longnecker K, Kirshtein J. Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 2000; 66:3798–3806 [View Article][PubMed]
    [Google Scholar]
  8. Jamuar SS, D’Gama AM, Walsh CA. Somatic mosaicism and neurological diseases.. In Lehner T, Miller BL, State MW. (editors) Genomics, Circuits, and Pathways in Clinical Neuropsychiatry Cambridge: Academic Press; 2016 pp 179–199
    [Google Scholar]
  9. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59:695–700 [View Article][PubMed]
    [Google Scholar]
  10. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46:1088–1092 [View Article][PubMed]
    [Google Scholar]
  11. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH et al. Database resources of the National center for biotechnology information. Nucleic Acids Res 2012; 40:D13–D25 [View Article][PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Rzhelsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Nei M. Estimation of the number of nucleotides substitutions in the control region of mitochondrial DNA in humans and chimpanzees. J Mol Evol 1993; 10:512–526
    [Google Scholar]
  18. Imhoff JF, Rahn T, Künzel S, Neulinger SC. New insights into the metabolic potential of the phototrophic purple bacterium Rhodopila globiformis DSM 161T from its draft genome sequence and evidence for a vanadium-dependent nitrogenase. Arch Microbiol 2018; 200:847–857 [View Article][PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  20. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  26. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article][PubMed]
    [Google Scholar]
  27. Casillo A, Lanzetta R, Parrilli M, Corsaro MM. Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar Drugs 2018; 16:E69 [View Article][PubMed]
    [Google Scholar]
  28. Decho AW, Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 2017; 8:922 [View Article][PubMed]
    [Google Scholar]
  29. Hogg S. Essential Microbiology Chichester: John Wiley & Sons, Ltd;; 2005
    [Google Scholar]
  30. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  31. Biebl H, Drews G. Das in-vivo Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1969; 2:425–452
    [Google Scholar]
  32. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  33. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  34. Briggs CE, Fratamico PM, Regional E. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother 1999; 43:846–849 [View Article][PubMed]
    [Google Scholar]
  35. Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091–1125 [View Article][PubMed]
    [Google Scholar]
  36. Iwase T, Tajima A, Sugimoto S, Okuda K-ichi, Hironaka I et al. A simple assay for measuring catalase activity: a visual approach. Sci Rep 2013; 3:3081 [View Article][PubMed]
    [Google Scholar]
  37. Gupta P, Sreelakshmi Y, Sharma R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods 2015; 11:5–12 [View Article]
    [Google Scholar]
  38. Li H, Zhang X-Y, Liu C, Lin C-Y, Xu Z et al. Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter . Int J Syst Evol Microbiol 2014; 64:973–978 [View Article][PubMed]
    [Google Scholar]
  39. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  40. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  41. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004290
Loading
/content/journal/ijsem/10.1099/ijsem.0.004290
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error