1887

Abstract

Four mesophilic, neutrophilic, and aerobic marine ammonia-oxidizing archaea, designated strains SCM1, HCA1, HCE1 and PS0, were isolated from a tropical marine fish tank, dimly lit deep coastal waters, the lower euphotic zone of coastal waters, and near-surface sediment in the Puget Sound estuary, respectively. Cells are straight or slightly curved small rods, 0.15–0.26 µm in diameter and 0.50–1.59 µm in length. Motility was not observed, although strain PS0 possesses genes associated with archaeal flagella and chemotaxis, suggesting it may be motile under some conditions. Cell membranes consist of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, with crenarchaeol as the major component. Strain SCM1 displays a single surface layer (S-layer) with p6 symmetry, distinct from the p3-S-layer reported for the soil ammonia-oxidizing archaeon EN76. Respiratory quinones consist of fully saturated and monounsaturated menaquinones with 6 isoprenoid units in the side chain. Cells obtain energy from ammonia oxidation and use carbon dioxide as carbon source; addition of an α-keto acid (α-ketoglutaric acid) was necessary to sustain growth of strains HCA1, HCE1, and PS0. Strain PS0 uses urea as a source of ammonia for energy production and growth. All strains synthesize vitamin B (thiamine), B (riboflavin), B (pyridoxine), and B (cobalamin). Optimal growth occurs between 25 and 32 °C, between pH 6.8 and 7.3, and between 25 and 37 ‰ salinity. All strains have a low mol% G+C content of 33.0–34.2. Strains are related by 98 % or greater 16S rRNA gene sequence identity, sharing ~85 % 16S rRNA gene sequence identity with EN76. All four isolates are well separated by phenotypic and genotypic characteristics and are here assigned to distinct species within the genus gen. nov. Isolates SCM1 (=ATCC TSD-97 =NCIMB 15022), HCA1 (=ATCC TSD-96), HCE1 (=ATCC TSD-98), and PS0 (=ATCC TSD-99) are type strains of the species sp. nov., sp. nov., sp. nov., and sp. nov., respectively. In addition, we propose the family fam. nov. and the order ord. nov. within the class .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002416
2017-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5067.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002416&mimeType=html&fmt=ahah

References

  1. Woese CR, Magrum LJ, Fox GE. Archaebacteria. J Mol Evol 1978; 11:245–252 [View Article][PubMed]
    [Google Scholar]
  2. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  3. Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature 1992; 356:148–149 [View Article][PubMed]
    [Google Scholar]
  4. Karner MB, Delong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 2001; 409:507–510 [View Article][PubMed]
    [Google Scholar]
  5. Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA et al. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol 2009; 11:2078–2093 [View Article][PubMed]
    [Google Scholar]
  6. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004; 304:66–74 [View Article][PubMed]
    [Google Scholar]
  7. Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 2011; 3:91–100 [View Article][PubMed]
    [Google Scholar]
  8. Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH et al. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep 2011; 3:390–396 [View Article][PubMed]
    [Google Scholar]
  9. Könneke M, Bernhard AE, de La Torre JR, Walker CB, Waterbury JB et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005; 437:543–546 [View Article][PubMed]
    [Google Scholar]
  10. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 2005; 102:14683–14688 [View Article][PubMed]
    [Google Scholar]
  11. Wood PM. Nitrification as a bacterial energy source. In Prosser JI. (editor) Nitrification Oxford, UK: IRL Press; 1986 pp. 39–62
    [Google Scholar]
  12. Agogué H, Brink M, Dinasquet J, Herndl GJ. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 2008; 456:788–791 [View Article][PubMed]
    [Google Scholar]
  13. Sintes E, Bergauer K, de Corte D, Yokokawa T, Herndl GJ. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 2013; 15:1647–1658 [View Article][PubMed]
    [Google Scholar]
  14. Martens-Habbena W, Berube PM, Urakawa H, de La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009; 461:976–979 [View Article][PubMed]
    [Google Scholar]
  15. Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 2014; 111:8239–8244 [View Article][PubMed]
    [Google Scholar]
  16. Horak RE, Qin W, Schauer AJ, Armbrust EV, Ingalls AE et al. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. Isme J 2013; 7:2023–2033 [View Article][PubMed]
    [Google Scholar]
  17. Newell SE, Fawcett SE, Ward BB. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the Sargasso Sea. Limnol Oceanogr 2013; 58:1491–1500 [View Article]
    [Google Scholar]
  18. Peng X, Fuchsman CA, Jayakumar A, Oleynik S, Martens-Habbena W et al. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific. Global Biogeochem Cycles 2015; 29:2034–2049 [View Article]
    [Google Scholar]
  19. Martens-Habbena W, Qin W, Horak RE, Urakawa H, Schauer AJ et al. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ Microbiol 2015; 17:2261–2274 [View Article][PubMed]
    [Google Scholar]
  20. Stahl DA, de La Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 2012; 66:83–101 [View Article][PubMed]
    [Google Scholar]
  21. de La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 2008; 10:810–818 [View Article][PubMed]
    [Google Scholar]
  22. Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW et al. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol Ecol 2014; 89:542–552 [View Article][PubMed]
    [Google Scholar]
  23. Elling FJ, Könneke M, Mußmann M, Greve A, Hinrichs K-U. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates. Geochim Cosmochim Acta 2015; 171:238–255 [View Article]
    [Google Scholar]
  24. Widderich N, Czech L, Elling FJ, Könneke M, Stöveken N et al. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus . Environ Microbiol 2016; 18:1227–1248 [View Article][PubMed]
    [Google Scholar]
  25. Qin W, Carlson LT, Armbrust EV, Devol AH, Moffett JW et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proc Natl Acad Sci USA 2015; 112:10979–10984 [View Article][PubMed]
    [Google Scholar]
  26. Qin W, Meinhardt KA, Moffett JW, Devol AH, Virginia Armbrust E et al. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environ Microbiol Rep 2017; 9:250–256 [View Article][PubMed]
    [Google Scholar]
  27. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C et al. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 2016; 92:fiw057 [View Article][PubMed]
    [Google Scholar]
  28. Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA 2014; 111:12504–12509 [View Article][PubMed]
    [Google Scholar]
  29. Bayer B, Vojvoda J, Offre P, Alves RJ, Elisabeth NH et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. Isme J 2016; 10:1051–1063 [View Article][PubMed]
    [Google Scholar]
  30. Walker CB, de La Torre JR, Klotz MG, Urakawa H, Pinel N et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 2010; 107:8818–8823 [View Article][PubMed]
    [Google Scholar]
  31. Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P et al. Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA 2015; 112:1173–1178 [View Article][PubMed]
    [Google Scholar]
  32. Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 2012; 14:3122–3145 [View Article][PubMed]
    [Google Scholar]
  33. Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S et al. Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats. PLoS One 2013; 8:e80835 [View Article][PubMed]
    [Google Scholar]
  34. Lehtovirta-Morley LE, Sayavedra-Soto LA, Gallois N, Schouten S, Stein LY et al. Identifying potential mechanisms enabling acidophily in the ammonia-oxidizing archaeon "Candidatus Nitrosotalea devanaterra". Appl Environ Microbiol 2016; 82:2608–2619 [View Article][PubMed]
    [Google Scholar]
  35. Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W et al. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc Natl Acad Sci USA 2017; 114:364–369 [View Article][PubMed]
    [Google Scholar]
  36. Pitcher A, Hopmans EC, Mosier AC, Park SJ, Rhee SK et al. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl Environ Microbiol 2011; 77:3468–3477 [View Article][PubMed]
    [Google Scholar]
  37. Damsté JS, Rijpstra WI, Hopmans EC, Jung MY, Kim JG et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b thaumarchaeota in soil. Appl Environ Microbiol 2012; 78:6866–6874 [View Article][PubMed]
    [Google Scholar]
  38. Elling FJ, Könneke M, Lipp JS, Becker KW, Gagen EJ et al. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochim Cosmochim Acta 2014; 141:579–597 [View Article]
    [Google Scholar]
  39. Elling FJ, Becker KW, Könneke M, Schröder JM, Kellermann MY et al. Respiratory quinones in Archaea: phylogenetic distribution and application as biomarkers in the marine environment. Environ Microbiol 2016; 18:692–707 [View Article][PubMed]
    [Google Scholar]
  40. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008; 6:245–252 [View Article][PubMed]
    [Google Scholar]
  41. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 2010; 18:331–340 [View Article][PubMed]
    [Google Scholar]
  42. Biller SJ, Mosier AC, Wells GF, Francis CA. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Front Microbiol 2012; 3:252 [View Article][PubMed]
    [Google Scholar]
  43. Hatzenpichler R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 2012; 78:7501–7510 [View Article][PubMed]
    [Google Scholar]
  44. Pester M, Schleper C, Wagner M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 2011; 14:300–306 [View Article][PubMed]
    [Google Scholar]
  45. Qin W, Martens-Habbena W, Kobelt JN, Stahl DA. Candidatus Nitrosopumilus. In Bergey's Manual of Systematics of Archaea and Bacteria New York: John Wiley & Sons, Ltd; 2016
    [Google Scholar]
  46. Qin W, Martens-Habbena W, Kobelt JN, Stahl DA. Candidatus Nitrosopumilaceae. In Bergey's Manual of Systematics of Archaea and Bacteria New York: John Wiley & Sons, Ltd; 2016
    [Google Scholar]
  47. Qin W, Martens-Habbena W, Kobelt JN, Stahl DA. Candidatus Nitrosopumilales. In Bergey's Manual of Systematics of Archaea and Bacteria New York: John Wiley & Sons, Ltd; 2016
    [Google Scholar]
  48. Stieglmeier M, Klingl A, Alves RJ, Rittmann SK, Melcher M et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota . Int J Syst Evol Microbiol 2014; 64:2738–2752 [View Article][PubMed]
    [Google Scholar]
  49. Rabinowitz JD, Kimball E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli . Anal Chem 2007; 79:6167–6173 [View Article][PubMed]
    [Google Scholar]
  50. Heal KR, Carlson LT, Devol AH, Armbrust EV, Moffett JW et al. Determination of four forms of vitamin B12 and other B vitamins in seawater by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2014; 28:2398–2404 [View Article][PubMed]
    [Google Scholar]
  51. Mastronarde DN. Fiducial marker and hybrid alignment methods for single- and double-axis tomography. In Frank J. (editor) Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell New York, NY: Springer; 2006 pp. 163–185
    [Google Scholar]
  52. Iancu CV, Tivol WF, Schooler JB, Dias DP, Henderson GP et al. Electron cryotomography sample preparation using the Vitrobot. Nat Protoc 2006; 1:2813–2819 [View Article][PubMed]
    [Google Scholar]
  53. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  54. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  55. Santoro AE, Casciotti KL. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J 2011; 5:1796–1808 [View Article][PubMed]
    [Google Scholar]
  56. Santoro AE, Casciotti KL, Francis CA. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol 2010; 12:1989–2006 [View Article][PubMed]
    [Google Scholar]
  57. Urakawa H, Martens-Habbena W, Stahl DA. Physiology and genomics of ammonia-oxidizing archaea. In Ward BB, Klotz MG, Arp DJ. (editors) Nitrification Washington, DC: ASM Press; 2011 pp. 117–155 [Crossref]
    [Google Scholar]
  58. Kamanda Ngugi D, Blom J, Alam I, Rashid M, Ba-Alawi W et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 2015; 9:396–411 [View Article][PubMed]
    [Google Scholar]
  59. Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosopumilus salaria" BD31, an ammonia-oxidizing archaeon from the San Francisco Bay estuary. J Bacteriol 2012; 194:2121–2122 [View Article][PubMed]
    [Google Scholar]
  60. Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WI et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc Natl Acad Sci USA 2016; 113:7888–7893 [View Article][PubMed]
    [Google Scholar]
  61. Doxey AC, Kurtz DA, Lynch MD, Sauder LA, Neufeld JD. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J 2015; 9:461–471 [View Article][PubMed]
    [Google Scholar]
  62. Taylor GT, Sullivan CW. Vitamin B 12 and cobalt cycling among diatoms and bacteria in Antarctic sea ice microbial communities. Limnol Oceanogr 2008; 53:1862–1877 [View Article]
    [Google Scholar]
  63. Löscher CR, Kock A, Könneke M, Laroche J, Bange HW et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 2012; 9:2419–2429 [View Article]
    [Google Scholar]
  64. Jung MY, Park SJ, Min D, Kim JS, Rijpstra WI et al. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl Environ Microbiol 2011; 77:8635–8647 [View Article][PubMed]
    [Google Scholar]
  65. Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 2012; 64:955–963 [View Article][PubMed]
    [Google Scholar]
  66. Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. Isme J 2014; 8:1135–1146 [View Article][PubMed]
    [Google Scholar]
  67. Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. Isme J 2016; 10:1836–1845 [View Article][PubMed]
    [Google Scholar]
  68. Taylor AE, Vajrala N, Giguere AT, Gitelman AI, Arp DJ et al. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria. Appl Environ Microbiol 2013; 79:6544–6551 [View Article][PubMed]
    [Google Scholar]
  69. Taylor AE, Taylor K, Tennigkeit B, Palatinszky M, Stieglmeier M et al. Inhibitory effects of C2 to C10 1-alkynes on ammonia oxidation in two Nitrososphaera species. Appl Environ Microbiol 2015; 81:1942–1948 [View Article][PubMed]
    [Google Scholar]
  70. Pelve EA, Lindås AC, Martens-Habbena W, de La Torre JR, Stahl DA et al. Cdv-based cell division and cell cycle organization in the thaumarchaeon Nitrosopumilus maritimus . Mol Microbiol 2011; 82:555–566 [View Article][PubMed]
    [Google Scholar]
  71. Albers SV, Meyer BH. The archaeal cell envelope. Nat Rev Microbiol 2011; 9:414–426 [View Article][PubMed]
    [Google Scholar]
  72. Pilhofer M, Ladinsky MS, Mcdowall AW, Jensen GJ. Bacterial TEM: new insights from cryo-microscopy. Methods Cell Biol 2010; 96:21–45 [View Article][PubMed]
    [Google Scholar]
  73. Sleytr UB, Sára M. Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol 1997; 15:20–26 [View Article][PubMed]
    [Google Scholar]
  74. Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WI et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I.1b Archaeon. ISME J 2010; 4:542–552 [View Article][PubMed]
    [Google Scholar]
  75. Hurley SJ, Elling FJ, Könneke M, Buchwald C, Wankel SD et al. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc Natl Acad Sci USA 2016; 113:7762–7767 [View Article][PubMed]
    [Google Scholar]
  76. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  77. Park BJ, Park SJ, Yoon DN, Schouten S, Sinninghe Damsté JS et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 2010; 76:7575–7587 [View Article][PubMed]
    [Google Scholar]
  78. Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damsté JS et al. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol 2014; 80:3645–3655 [View Article][PubMed]
    [Google Scholar]
  79. Li Y, Ding K, Wen X, Zhang B, Shen B et al. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Sci Rep 2016; 6:23747 [View Article][PubMed]
    [Google Scholar]
  80. Preston CM, Wu KY, Molinski TF, Delong EF. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 1996; 93:6241–6246 [View Article][PubMed]
    [Google Scholar]
  81. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 2011; 108:15892–15897 [View Article][PubMed]
    [Google Scholar]
  82. Kerou M, Eloy Alves RJ, Schleper C. Nitrososphaeria. Bergey's Manual of Systematics of Archaea and Bacteria New York: John Wiley & Sons, Ltd; 2016
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002416
Loading
/content/journal/ijsem/10.1099/ijsem.0.002416
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error