1887

Abstract

A Gram-positive, non-motile, non-mycelium-forming, rod-shaped actinomycete, designated KSW2-17, was isolated from dried seaweed collected from beach sand along the coast of Jeju, Republic of Korea. The organism had ornithine as the diagnostic cell-wall diamino acid, MK-10 and MK-11 as the major menaquinones, and phosphatidylglycerol and diphosphatidylglycerol as polar lipids. The fatty acid profile included predominantly iso- and anteiso-branched acids and a minor amount of tuberculostearic acid (10-methyl C). The DNA G+C content was 68.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the seaweed isolate formed a distinct clade within the radiation of the family and had highest sequence similarity (96.1–96.3 %) to members of the genera , and . On the basis of phenotypic and genotypic evidence, strain KSW2-17 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is KSW2-17 (=JCM 14008=KCTC 19176).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64591-0
2007-11-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2498.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64591-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P., Naumann D., Suzuki K. 2002; Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; a polyphasic characterization of Subtercola pratensis sp.nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov.,sp. nov. Int J Syst Evol Microbiol 52:1441–1454 [CrossRef]
    [Google Scholar]
  2. Evtushenko L. I., Takeuchi M. 2003; The family Microbacteriaceae . In The Prokaryotes: a Handbook on the Biology of Bacteria . , 3rd edn. vol 3 pp 1020–1098 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  3. Evtushenko L. I., Dorofeeva L. V., Dobrovolskaya T. G., Streshinskaya G. M., Subbotin S. A., Tiedje J. M. 2001; Agreia bicolorata gen. nov., sp. nov. to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila . Int J Syst Evol Microbiol 51:2073–2079 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Gosink J. J., Woese C. R., Staley J. T. 1998; Polaribacter gen. nov., with three new species, P.irgensii sp. nov., P. franzmannii sp. nov., P.filamentus sp. nov., gas vacuolated polar marine bacteria of the Cytophaga Flavobacterium Bacteroides group and reclassification of ‘ Flectobacillus glomeratus ’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235 [CrossRef]
    [Google Scholar]
  8. Han S. K., Nedashkovskaya O. I., Mikhailov V. V., Kim S. B., Bae K. S. 2003; Salinibacterium amurskyense gen. nov., sp. nov. a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53:2061–2066 [CrossRef]
    [Google Scholar]
  9. Hancock I. C. 1994; Analysis of cell wall constituents of Gram-positive bacteria. In Chemical Methods in Prokaryotic Systematics pp 63–84 Edited by Goodfellow M., O'Donnell A. G. Chichester: John Wiley & Sons;
    [Google Scholar]
  10. Hopwood D. A., Bibb M. J., Chater K. F., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985; Genetic Manipulation of Streptomyces. A Laboratory Manual . Norwich: John Innes Foundation;
    [Google Scholar]
  11. Inoue K., Komagata K. 1976; Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J Gen Appl Microbiol 22:165–176 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E.-L., Ulrych U., Busse H.-J., Weiss N., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov., sp. nov. a novel psychrophilic genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 50:355–363 [CrossRef]
    [Google Scholar]
  14. Komagata K., Suzuki K.-I. 1986; Genus Curtobacterium Yamada and Komagata 1972 425AL . In Bergey's Manual of Systematic Bacteriology vol 2 pp 1313–1317 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams and Wilkins;
    [Google Scholar]
  15. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics pp 173–199 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  16. Lee S. D. 2006; Phycicoccus jejuensis gen. nov., sp. nov., an actinomycete isolated from seaweed. Int J Syst Evol Microbiol 56:2369–2373 [CrossRef]
    [Google Scholar]
  17. Mac Faddin J. F. 1980 Biochemical Tests for Identification of Medical Bacteria , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Manaia C. M., Nogles B., Weiss N., Nunes O. C. 2004; Gulosibacter molinativorax gen. nov., sp. nov., a molinate-degrading bacterium, and classification of ‘ Brevibacterium helvolum ’ DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov. Int J Syst Evol Microbiol 54:783–789 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., Alshamaony L., Goodfellow M. 1977; Differentiation of Mycobacterium , Nocardia , and related taxa by thin layer chromatographic analysis of whole-cell methanolysates. J Gen Microbiol 88:200–204
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  22. Park Y. H., Suzuki K., Yim D. G., Lee K. C., Kim E., Yoon J., Kim S., Kho Y. H., Goodfellow M., Komagata K. 1993; Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 94:307–313
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sheridan P. P., Loveland-Curtze J., Miteva V. I., Brenchley J. E. 2003; Rhodoglobus vestalii gen. nov., sp. nov. a novel psychrophilic organism isolated from an Antarctic Dry Valley lake. Int J Syst Evol Microbiol 53:985–994 [CrossRef]
    [Google Scholar]
  25. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  27. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. 1997; Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate “ Curtobacterium psychrophilum ” Inoue and Komagata 1976. Int J Syst Bacteriol 47:474–478 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  29. Tiago I., Pires C., Mendes V., Morais P. V., Costa M., Verissimo A. 2005; Microcella putealis gen. nov., sp. nov., a Gram-positive alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 28:479–487 [CrossRef]
    [Google Scholar]
  30. Tiago I., Morais P., Costa M., Veríssimo A. 2006; Microcella alkaliphila sp. nov., a novel member of the family Microbacteriaceae isolated from a non-saline alkaline groundwater, and emended description of the genus Microcella . Int J Syst Evol Microbiol 56:2313–2316 [CrossRef]
    [Google Scholar]
  31. Uchida K., Aida K. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134 [CrossRef]
    [Google Scholar]
  32. Yoon J. H., Kang S. J., Schumann P., Oh T. K. 2006; Yonghaparkia alkaliphila gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an alkaline soil. Int J Syst Evol Microbiol 56:2415–2420 [CrossRef]
    [Google Scholar]
  33. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Kakakoutskii L. V. 1993; Rathayibacter gen. nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. Int J Syst Bacteriol 43:143–149 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64591-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64591-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error