1887

Abstract

A Gram-stain-positive, neutrophilic, rod-shaped bacterium, strain A1g, was isolated from activated sludge of a bioreactor and was subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0–17.0 % (w/v) NaCl and at pH 6.0–9.0; optimum growth was observed in the presence of 3.0–5.0 % (w/v) NaCl and at pH 7.0. Strain A1g was motile, formed cream-coloured colonies, was catalase- and oxidase-positive and was able to hydrolyse aesculin, Tween 40 and Tween 60. Chemotaxonomic analysis revealed menaquinone-7 as the predominant respiratory quinone and anteiso-C, anteiso-C, iso-C and iso-C as major fatty acids. The genomic DNA G+C content of strain A1g was 36.3 mol%. Comparative 16S rRNA gene sequence analysis revealed that the new isolate belonged to the genus and exhibited closest phylogenetic affinity to the type strains of subsp. (97.9 % similarity) and subsp. (97.5 %), but less than 97 % sequence similarity with respect to the type strains of other recognized species. Levels of DNA–DNA relatedness between strain A1g and reference strains subsp. DSM 16557, subsp. JCM 12661 and DSM 14371 were 29, 45 and 38 %, respectively. On the basis of phenotypic and genotypic data, strain A1g is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is A1g (=CGMCC 1.7693 =JCM 15776).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016295-0
2010-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2409.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016295-0&mimeType=html&fmt=ahah

References

  1. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  3. Dong X.-Z., Cai M.-Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press;
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  6. Heyrman J., Logan N. A., Busse H.-J., Balcaen A., Lebbe L., Rodriguez-Diaz M., Swings J., De Vos P. 2003; Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus , as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus . Int J Syst Evol Microbiol 53:501–511 [CrossRef]
    [Google Scholar]
  7. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  8. Kawamoto I., Oka T., Nara T. 1981; Cell wall composition of Micromonospora olivoasterospora , Micromonospora sagamiensis , and related organisms. J Bacteriol 146:527–534
    [Google Scholar]
  9. Kim Y.-G., Choi D. H., Hyun S., Cho B. C. 2007; Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413 [CrossRef]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  11. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  12. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  13. Lee J.-S., Lim J.-M., Lee K. C., Lee J.-C., Park Y.-H., Kim C.-J. 2006; Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257 [CrossRef]
    [Google Scholar]
  14. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  15. Lu J., Nogi Y., Takami H. 2001; Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297 [CrossRef]
    [Google Scholar]
  16. Lu J., Nogi Y., Takami H. 2002; Oceanobacillus iheyensis gen. nov., sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM , List no. 85. Int J Syst Evol Microbiol 52:685–690 [CrossRef]
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  18. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479:297–306 [CrossRef]
    [Google Scholar]
  19. Nam J.-H., Bae W., Lee D.-H. 2008; Oceanobacillus caeni sp. nov., isolated from a Bacillus -dominated wastewater treatment system in Korea. Int J Syst Evol Microbiol 58:1109–1113 [CrossRef]
    [Google Scholar]
  20. Namwong S., Tanasupawat S., Lee K. C., Lee J.-S. 2009; Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 59:2254–2259 [CrossRef]
    [Google Scholar]
  21. Raats D., Halpern M. 2007; Oceanobacillus chironomi sp. nov., a halotolerant and facultatively alkaliphilic species isolated from a chironomid egg mass. Int J Syst Evol Microbiol 57:255–259 [CrossRef]
    [Google Scholar]
  22. Romano I., Lama L., Nicolaus B., Poli A., Gambacorta A., Giordano A. 2006; Oceanobacillus oncorhynchi subsp. incaldanensis subsp. nov., an alkalitolerant halophile isolated from an algal mat collected from a sulfurous spring in Campania (Italy), and emended description of Oceanobacillus oncorhynchi . Int J Syst Evol Microbiol 56:805–810 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M. 2007 Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624. [CrossRef]
  28. Xu X.-W., Wu Y.-H., Wang C.-S., Yang J.-Y., Oren A., Wu M. 2008; Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58:637–640 [CrossRef]
    [Google Scholar]
  29. Yumoto I., Hirota K., Nodasaka Y., Nakajima K. 2005; Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout ( Oncorhynchus mykiss ), and emended description of the genus Oceanobacillus . Int J Syst Evol Microbiol 55:1521–1524 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.016295-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016295-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error