1887

Abstract

The TATA-box-binding protein (TBP) plays a key role in initiating eukaryotic transcription and is used by many viruses for viral transcription. We previously reported increased TBP levels during infection with the baculovirus multicapsid nuclear polyhedrovirus (AcMNPV). The TBP antiserum used in that study, however, cross-reacted with a baculoviral protein. Here, we reported that increased amounts of nuclear TBP were detected upon infection of and TN-368 cells with a TBP-specific antiserum. TBP levels increased until 72 h post-infection (p.i.), whilst transcripts decreased by 16 h p.i., which suggested a virus-induced influence on the TBP protein levels. To address a potential modification of the TBP degradation pathway during infection, we investigated the possible role of viral ubiquitin. Infection studies with AcMNPV recombinants carrying a mutated viral ubiquitin gene revealed that the TBP increase during infection was not altered. In addition, pulse–chase experiments indicated a high TBP half-life of ~60 h in uninfected cells, suggesting that a virus-induced increase of TBP stability was unlikely. This increase in TBP correlated with a redistribution to nuclear domains resembling sites of viral DNA synthesis. Furthermore, we observed colocalization of TBP with host RNA polymerase (RNAP) II, but only until 8 h p.i., whilst TBP, but not RNAPII, was present in the enlarged replication domains late during infection. Thus, we suggested that AcMNPV adapted a mechanism to accumulate the highly stable cellular TBP at sites of viral DNA replication and transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059949-0
2014-06-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/6/1396.html?itemId=/content/journal/jgv/10.1099/vir.0.059949-0&mimeType=html&fmt=ahah

References

  1. Besse S., Vigneron M., Pichard E., Puvion-Dutilleul F. 1995; Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granules. Gene Expr 4:143–161[PubMed]
    [Google Scholar]
  2. Burley S. K., Roeder R. G. 1996; Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem 65:769–799 [View Article][PubMed]
    [Google Scholar]
  3. Chen Y.-R., Zhong S., Fei Z., Hashimoto Y., Xiang J. Z., Zhang S., Blissard G. W. 2013; The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusia ni cells. J Virol 87:6391–6405 [View Article][PubMed]
    [Google Scholar]
  4. Davidson I. 2003; The genetics of TBP and TBP-related factors. Trends Biochem Sci 28:391–398 [View Article][PubMed]
    [Google Scholar]
  5. Evans J. T., Rohrmann G. F. 1997; The baculovirus single-stranded DNA binding protein, LEF-3, forms a homotrimer in solution. J Virol 71:3574–3579[PubMed]
    [Google Scholar]
  6. Fuchs L. Y., Woods M. S., Weaver R. F. 1983; Viral transcription during Autographa californica nuclear polyhedrosis virus infection: a novel RNA polymerase induced in infected Spodoptera frugiperda cells. J Virol 48:641–646[PubMed]
    [Google Scholar]
  7. Gardiner G. R., Stockdale H. 1975; Two tissue culture media for production of lepidopteran cells and nuclear polyhedrosis viruses. J Invertebr Pathol 25:363–370 [View Article]
    [Google Scholar]
  8. Geisberg J. V., Struhl K. 2000; TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo . Mol Cell Biol 20:1478–1488 [View Article][PubMed]
    [Google Scholar]
  9. Grula M. A., Buller P. L., Weaver R. F. 1981; Alpha-amanitin-resistant viral RNA synthesis in nuclei isolated from nuclear polyhedrosis virus-infected Heliothis zea larvae and Spodoptera frugiperda cells. J Virol 38:916–921[PubMed]
    [Google Scholar]
  10. Guarino L. A. 1990; Identification of a viral gene encoding a ubiquitin-like protein. Proc Natl Acad Sci U S A 87:409–413 [View Article][PubMed]
    [Google Scholar]
  11. Guarino L. A., Smith G., Dong W. 1995; Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Cell 80:301–309 [View Article][PubMed]
    [Google Scholar]
  12. Guarino L. A., Jin J., Dong W. 1998a; Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. J Virol 72:10003–10010[PubMed]
    [Google Scholar]
  13. Guarino L. A., Xu B., Jin J., Dong W. 1998b; A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 72:7985–7991[PubMed]
    [Google Scholar]
  14. Haas A. L., Katzung D. J., Reback P. M., Guarino L. A. 1996; Functional characterization of the ubiquitin variant encoded by the baculovirus Autographa californica . Biochemistry 35:5385–5394 [View Article][PubMed]
    [Google Scholar]
  15. Harland L., Crombie R., Anson S., deBoer J., Ioannou P. A., Antoniou M. 2002; Transcriptional regulation of the human TATA binding protein gene. Genomics 79:479–482 [View Article][PubMed]
    [Google Scholar]
  16. Hernandez N. 1993; TBP, a universal eukaryotic transcription factor?. Genes Dev 7:7B1291–1308 [View Article][PubMed]
    [Google Scholar]
  17. Hink W. F. 1970; Established insect cell line from the cabbage looper, Trichoplusia ni . Nature 226:466–467 [View Article][PubMed]
    [Google Scholar]
  18. Imai N., Matsuda N., Tanaka K., Nakano A., Matsumoto S., Kang W. 2003; Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. J Virol 77:923–930 [View Article][PubMed]
    [Google Scholar]
  19. Imai N., Matsumoto S., Kang W. 2005; Formation of Bombyx mori nucleopolyhedrovirus IE2 nuclear foci is regulated by the functional domains for oligomerization and ubiquitin ligase activity. J Gen Virol 86:637–644 [View Article][PubMed]
    [Google Scholar]
  20. Johnson S. A. S., Mandavia N., Wang H. D., Johnson D. L. 2000; Transcriptional regulation of the TATA-binding protein by Ras cellular signaling. Mol Cell Biol 20:5000–5009 [View Article][PubMed]
    [Google Scholar]
  21. Katsuma S., Kawaoka S., Mita K., Shimada T. 2008; Genome-wide survey for baculoviral host homologs using the Bombyx genome sequence. Insect Biochem Mol Biol 38:1080–1086 [View Article][PubMed]
    [Google Scholar]
  22. Katsuma S., Tsuchida A., Matsuda-Imai N., Kang W., Shimada T. 2011; Role of the ubiquitin–proteasome system in Bombyx mori nucleopolyhedrovirus infection. J Gen Virol 92:699–705 [View Article][PubMed]
    [Google Scholar]
  23. Kim J. M., Hong Y., Jeang K. T., Kim S. 2000; Transactivation activity of the human cytomegalovirus IE2 protein occurs at steps subsequent to TATA box-binding protein recruitment. J Gen Virol 81:37–46[PubMed]
    [Google Scholar]
  24. Knebel-Mörsdorf D., Quadt I., Li Y., Montier L., Guarino L. A. 2006; Expression of baculovirus late and very late genes depends on LEF-4, a component of the viral RNA polymerase whose guanyltransferase function is essential. J Virol 80:4168–4173 [View Article][PubMed]
    [Google Scholar]
  25. Krappa R., Roncarati R., Knebel-Mörsdorf D. 1995; Expression of PE38 and IE2, viral members of the C3HC4 finger family, during baculovirus infection: PE38 and IE2 localize to distinct nuclear regions. J Virol 69:5287–5293[PubMed]
    [Google Scholar]
  26. Lee W. S., Kao C. C., Bryant G. O., Liu X., Berk A. J. 1991; Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67:365–376 [View Article][PubMed]
    [Google Scholar]
  27. Lu A., Miller L. K. 1997; Regulation of baculovirus late and very late gene expression. In The Baculoviruses pp. 193–216 Edited by Miller L. K. New York: Plenum; [View Article]
    [Google Scholar]
  28. Lyupina Y. V., Zatsepina O. G., Timokhova A. V., Orlova O. V., Kostyuchenko M. V., Beljelarskaya S. N., Evgen’ev M. B., Mikhailov V. S. 2011; New insights into the induction of the heat shock proteins in baculovirus infected insect cells. Virology 421:34–41 [View Article][PubMed]
    [Google Scholar]
  29. Mainz D., Quadt I., Knebel-Mörsdorf D. 2002; Nuclear IE2 structures are related to viral DNA replication sites during baculovirus infection. J Virol 76:5198–5207 [View Article][PubMed]
    [Google Scholar]
  30. Mikhailov V. S., Mikhailova A. L., Iwanaga M., Gomi S., Maeda S. 1998; Bombyx mori nucleopolyhedrovirus encodes a DNA-binding protein capable of destabilizing duplex DNA. J Virol 72:3107–3116[PubMed]
    [Google Scholar]
  31. Murges D., Quadt I., Schröer J., Knebel-Mörsdorf D. 2001; Dynamic nuclear localization of the baculovirus proteins IE2 and PE38 during the infection cycle: the promyelocytic leukemia protein colocalizes with IE2. Exp Cell Res 264:219–232 [View Article][PubMed]
    [Google Scholar]
  32. Nobiron I., O’Reilly D. R., Olszewski J. A. 2003; Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: a global analysis of host gene regulation during infection, using a differential display approach. J Gen Virol 84:3029–3039 [View Article][PubMed]
    [Google Scholar]
  33. Ooi B. G., Miller L. K. 1988; Regulation of host RNA levels during baculovirus infection. Virology 166:515–523 [View Article][PubMed]
    [Google Scholar]
  34. Phillips A. C., Vousden K. H. 1997; Analysis of the interaction between human papillomavirus type 16 E7 and the TATA-binding protein, TBP. J Gen Virol 78:905–909[PubMed]
    [Google Scholar]
  35. Quadt I., van Lent J., Knebel-Mörsdorf D. 2007; Studies of the silencing of baculovirus DBP. J Virol 81:6122–6127 [View Article][PubMed]
    [Google Scholar]
  36. Quadt I., Mainz D., Mans R., Kremer A., Knebel-Mörsdorf D. 2002; Baculovirus infection raises the level of TATA-binding protein that colocalizes with viral DNA replication sites. J Virol 76:11123–11127 [View Article][PubMed]
    [Google Scholar]
  37. Quadt I., Günther A. K., Voss D., Schelhaas M., Knebel-Mörsdorf D. 2006; TATA-binding protein and TBP-associated factors during herpes simplex virus type 1 infection: localization at viral DNA replication sites. Virus Res 115:207–213 [View Article][PubMed]
    [Google Scholar]
  38. Reilly L. M., Guarino L. A. 1996; The viral ubiquitin gene of Autographa californica nuclear polyhedrosis virus is not essential for viral replication. Virology 218:243–247 [View Article][PubMed]
    [Google Scholar]
  39. Rohrmann G. F. 2013 Baculovirus Molecular Biology, 3rd edn. Bethesda, MD: National Center for Biotechnology Information;
    [Google Scholar]
  40. Ross L., Guarino L. A. 1997; Cycloheximide inhibition of delayed early gene expression in baculovirus-infected cells. Virology 232:105–113 [View Article][PubMed]
    [Google Scholar]
  41. Salem T. Z., Zhang F., Xie Y., Thiem S. M. 2011; Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. Virology 412:167–178 [View Article][PubMed]
    [Google Scholar]
  42. Tjia S. T., Carstens E. B., Doerfler W. 1979; Infection of Spodoptera frugiperda cells with Autographa californica nuclear polyhedrosis virus II. The viral DNA and the kinetics of its replication. Virology 99:399–409 [View Article][PubMed]
    [Google Scholar]
  43. van Loo N. D., Fortunati E., Ehlert E., Rabelink M., Grosveld F., Scholte B. J. 2001; Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol 75:961–970 [View Article][PubMed]
    [Google Scholar]
  44. van Oers M. M., van Marwijk M., Kwa M. S., Vlak J. M., Thomas A. A. 1999; Cloning and analysis of cDNAs encoding the hypusine-containing protein eIF5A of two lepidopteran insect species. Insect Mol Biol 8:531–538 [View Article][PubMed]
    [Google Scholar]
  45. van Oers M. M., Van Der Veken L. T., Vlak J. M., Thomas A. A. M. 2001; Effect of baculovirus infection on the mRNA and protein levels of the Spodoptera frugiperda eukaryotic initiation factor 4E. Insect Mol Biol 10:255–264 [View Article][PubMed]
    [Google Scholar]
  46. van Oers M. M., Doitsidou M., Thomas A. A. M., de Maagd R. A., Vlak J. M. 2003; Translation of both 5′TOP and non-TOP host mRNAs continues into the late phase of Baculovirus infection. Insect Mol Biol 12:75–84 [View Article][PubMed]
    [Google Scholar]
  47. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. 1977; The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217 [View Article][PubMed]
    [Google Scholar]
  48. Wang H. D., Trivedi A., Johnson D. L. 1997; Hepatitis B virus X protein induces RNA polymerase III-dependent gene transcription and increases cellular TATA-binding protein by activating the Ras signaling pathway. Mol Cell Biol 17:6838–6846[PubMed]
    [Google Scholar]
  49. Xue J. L., Salem T. Z., Turney C. M., Cheng X. W. 2010; Strategy of the use of 28S rRNA as a housekeeping gene in real-time quantitative PCR analysis of gene transcription in insect cells infected by viruses. J Virol Methods 163:210–215 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059949-0
Loading
/content/journal/jgv/10.1099/vir.0.059949-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error