1887

Abstract

The microaerophilic flagellated protist , the commonest protozoal agent of intestinal infections worldwide, is of uncertain phylogeny, but is usually regarded as the earliest branching of the eukaryotic clades. Under strictly anaerobic conditions, a mass spectrometric investigation of gas production indicated a low level of generation of dihydrogen (2 nmol min per 10 organisms), about 10-fold lower than that in under similar conditions. Hydrogen evolution was O sensitive, and inhibited by 100 μM metronidazole. Fluorescent labelling of cells using monoclonal antibodies to typical hydrogenosomal enzymes from (malate enzyme, and succinyl-CoA synthetase α and β subunits), and to the large-granule fraction (hydrogenosome-enriched, also from ) gave no discrete localization of epitopes. Cell-free extracts prepared under anaerobic conditions showed the presence of a CO-sensitive hydrogenase activity. This first report of hydrogen production in a eukaryote with no recognizable hydrogenosomes raises further questions about the early branching status of ; the physiological characterization of its hydrogenase, and its recently elucidated gene sequence, will aid further phylogenetic investigations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-727
2002-03-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480727a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-727&mimeType=html&fmt=ahah

References

  1. Adam R. D. 1991; The biology of Giardia spp. Microbiol Rev 55:706–732
    [Google Scholar]
  2. Adam R. D. 2000; The Giardia genome project. Int J Parasitol 30:475–484 [CrossRef]
    [Google Scholar]
  3. Benchimol M., Elias C. A., DeSouza W. 1982; Tritrichomonas foetus : ultrastructural localisation of calcium in the plasmamembrane and in the hydrogenosome. Exp Parasitol 54:277–284 [CrossRef]
    [Google Scholar]
  4. Biagini G. A., Hayes A. J., Suller M. T. E., Winters C., Finlay B. J., Lloyd D. 1997a; Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143:1623–1629 [CrossRef]
    [Google Scholar]
  5. Biagini G. A., Hill B., Winters C., Lloyd D., van der Giesen M. 1997b; Ca2+ accumulation in the hydrogenosomes of Neocallimastix frontalis L2, a mitochondria-like physiological role. FEMS Microbiol Lett 149:227–232 [CrossRef]
    [Google Scholar]
  6. Biagini G. A., Finlay B., Lloyd D. 1997c; Evolution of the hydrogenosome. FEMS Microbiol Lett 153:133–140
    [Google Scholar]
  7. Brown D. M., Upcroft J. A., Edwards M. R., Upcroft P. 1998; Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis . Int J Parasitol 28:149–164 [CrossRef]
    [Google Scholar]
  8. Brugerolle G., Bricheux G., Coffe G. 2000; Immunolocalization of two hydrogenosomal enzymes of Trichomonas vaginalis . Parasitol Res 86:30–35 [CrossRef]
    [Google Scholar]
  9. Cammack R., Hall D. O., Rao K. K. 1985; Hydrogenases: structure and applications in hydrogen production. In Microbial Gas Metabolism pp 75–102 Edited by Poole R. K. Dow C. S. London: Academic Press;
    [Google Scholar]
  10. Chapman A., Hann A. O., Linstead D., Lloyd D. 1985; Dispersive X-ray microanalysis of membrane associated inclusions in hydrogenosomes isolated from Trichomonas vaginalis . J Gen Microbiol 131:2933–2939
    [Google Scholar]
  11. Diamond L. S. 1957; The establishment of various trichomonads in animals and man in axenic culture. J Parasitol 43:488–490
    [Google Scholar]
  12. Edwards M. R., Gilroy F. V., Jimenez B. M., O’Sullivan W. J. 1989; Alanine is a major end product of metabolism by Giardia lamblia : a proton nuclear magnetic resonance study. Mol Biochem Parasitol 37:19–26 [CrossRef]
    [Google Scholar]
  13. Ellis J. E., McIntyre P. S., Saleh M., Williams A. G., Lloyd D. 1991a; Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Polyplastron multivesciculatum . Appl Environ Microbiol 57:1400–1407
    [Google Scholar]
  14. Ellis J. E., McIntyre P. S., Saleh M., Williams A. G., Lloyd D. 1991b; Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Dasytricha ruminantium . J Gen Microbiol 147:1409–1417
    [Google Scholar]
  15. Ellis J. E., McIntyre P. S., Saleh M., Williams A. G., Lloyd D. 1991c; The influence of minimal concentrations of O2 on the fermentative metabolism of the rumen entodimiomorphid ciliate, Eudiplodinium maggii . Curr Microbiol 23:245–251 [CrossRef]
    [Google Scholar]
  16. Ellis J. E., Cole D., Lloyd D. 1992; Influence of oxygen on the fermentative metabolism of metronidazole-sensitive and resistant strains of Trichomonas vaginalis . Mol Biochem Parasitol 56:79–88 [CrossRef]
    [Google Scholar]
  17. Ellis J. E., Williams R., Cole D., Cammack R., Lloyd D. 1993; Electron transport components of the parasitic protozoon, Giardia lamblia . FEBS Lett 325:196–200 [CrossRef]
    [Google Scholar]
  18. Embley T. M., Hirt R. P. 1998; Early branching eukaryotes?. Curr Opin Genet Dev 8:624–629 [CrossRef]
    [Google Scholar]
  19. Fenchel T., Finlay B. J. 1992; Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480
    [Google Scholar]
  20. Fenchel T., Finlay B. J. 1995 Ecology and Evolution in Anoxic Worlds Oxford: Oxford University Press;
    [Google Scholar]
  21. Finlay B. J., Fenchel T. 1989; Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314 [CrossRef]
    [Google Scholar]
  22. Gupta R. S., Golding G. B. 1996; The origin of the eukaryotic cell. Trends Biochem Sci 21:166–171 [CrossRef]
    [Google Scholar]
  23. Happe T., Mosler B., Naber J. D. 1994; Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii . Eur J Biochem 222:769–774 [CrossRef]
    [Google Scholar]
  24. Hillman K., Lloyd D., Scott R. I., Williams A. G. 1985; The effect of O2 on H2 production by rumen holotrich protozoa as determined by membrane inlet mass spectrometry. In Gas Metabolism pp 271–277 Edited by Poole R. K. Dow C. S. London: Academic Press;
    [Google Scholar]
  25. Horner D., Hirt R. P., Kilvington S., Lloyd D., Embley T. M. 1996; Molecular data suggest an earlier acquisition of the mitochondrial endosymbiont. Proc R Soc B Biol Sci 263:1053–1059 [CrossRef]
    [Google Scholar]
  26. Horner D. S., Foster P. G., Embley T. M. 2000; Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709 [CrossRef]
    [Google Scholar]
  27. Humphreys M., Ralphs J., Durrant L., Lloyd D. 1994; Hydrogenosomes in trichomonads are Ca2+-stores and have a transmembrane electrochemical potential. Biochem Soc Trans 22:324S
    [Google Scholar]
  28. Humphreys M., Ralphs J., Durrant L., Lloyd D. 1998; Confocal laser scanning microscopy of trichomonad hydrogenosomes store calcium and show a membrane potential. Eur J Protistol 34:356–362 [CrossRef]
    [Google Scholar]
  29. Keister D. B. 1983; Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488 [CrossRef]
    [Google Scholar]
  30. Lake J. A. 1994; Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci USA 91:1455–1459 [CrossRef]
    [Google Scholar]
  31. Leipe D. D., Gunderson J. H., Nerad T. A., Sogin M. L. 1993; Small subunit ribosomal RNA of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59:41–48 [CrossRef]
    [Google Scholar]
  32. Lindmark D. G., Müller M. 1973; Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus and its role in pyruvate metabolism. J Biol Chem 248:7724–7728
    [Google Scholar]
  33. Lloyd D. 1974 The Mitochondria of Microrganisms London: Academic Press;
    [Google Scholar]
  34. Lloyd D., Scott R. I. 1982; Direct measurement of dissolved gases using membrane inlet mass spectrometry. J Microbiol Methods 1:313–320
    [Google Scholar]
  35. Lloyd D., Williams A. G. 1993; Biological activities of symbiotic and parasitic protists in low O2 environments. Adv Microb Ecol 13:211–262
    [Google Scholar]
  36. Lloyd D., Williams A. G., Yarlett N., Hillman K. 1983; Similarities between rumen ciliates and trichomonads: both possess hydrogenosomes. Abstr Int Soc Evol Protistol , 5th Meeting, Banyuls-sur-Mer, abstract 26.
  37. Lloyd D., Ellis J. E., Hillman K., Williams A. G. 1992; Membrane inlet mass spectrometry: probing the rumen ecosystem. J Appl Bacteriol Symp Suppl 73:1555–1635
    [Google Scholar]
  38. Lloyd D., Harris J. C., Biagini G. A. 8 other authors 2002; Oxygen homeodynamics in Giardia . In Giardia, a Cosmopolitan Parasite Edited by Wallis P. Wallingford: CAB International; in press
    [Google Scholar]
  39. López-Garcia P., Moreira D. 1999; Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24:88–93 [CrossRef]
    [Google Scholar]
  40. Lundsgaard J., Degn H. 1973; Digital regulation of gas flow rates and composition of gas mixtures. IEEE Trans Biomed Eng 20:384–387
    [Google Scholar]
  41. Madigan M. T., Martinko J. M., Parker J. 2000 Biology of Microorganisms , 9th edn. Upper Saddle River, NJ: Prentice Hall;
    [Google Scholar]
  42. Paget T. A., Lloyd D. 1990; Trichomonas vaginalis requires traces of oxygen and high concentrations of carbon dioxide for growth. Mol Biochem Parasitol 41:65–72 [CrossRef]
    [Google Scholar]
  43. Paget T. A., Rayner M. H., Shipp D. W. E., Lloyd D. 1990; Giardia lamblia produces alanine anaerobically but not in the presence of O2. Mol Biochem Parasitol 42:63–68 [CrossRef]
    [Google Scholar]
  44. Paget T. A., Kelly M. L., Jarroll E. L., Lindmark D. G., Lloyd D. 1993; The effects of oxygen on fermentation in Giardia lamblia . Mol Biochem Parasitol 57:65–72 [CrossRef]
    [Google Scholar]
  45. Rees E. M. R., Lloyd D., Williams A. G. 1998; The effects of differing concentrations of CO2 and O2 on the fermentative metabolisms of the rumen fungi Neocallimastix patriciarum and Neocallimastix frontalis L2. Can J Microbiol 44:819–824 [CrossRef]
    [Google Scholar]
  46. Roger A. J., Clark C. G., Doolittle W. F. 1998; A possible mitochondrial gene in the early branching amitochondriate protist Trichomonas vaginalis . Proc Natl Acad Sci USA 95:229–234 [CrossRef]
    [Google Scholar]
  47. Rosenthal B., Zhiming M., Caplivski D., Ghosh S., de la Vega H., Graf T., Samuelson J. 1997; Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate parasite Entamoeba histolytica . J Bacteriol 179:3736–3745
    [Google Scholar]
  48. Schnackenberg J., Schulz R., Senger H. 1993; Characterization and purification of a hydrogenase for the green alga Scenedesmus obliquus. FEBS Lett 327:21–24 [CrossRef]
    [Google Scholar]
  49. Sogin M. L. 1991; Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463 [CrossRef]
    [Google Scholar]
  50. Soltys B. J., Gupta R. S. 1994; Presence and cellular distributions of a 60 kDa protein related to mitochondrial HSP-60 in Giardia lamblia . J Parasitol 80:580–590 [CrossRef]
    [Google Scholar]
  51. Wilhelm E., Battino R., Wilcock R. J. 1977; Low pressure solubilities of gases in liquid waters. Chem Rev 77:219–362 [CrossRef]
    [Google Scholar]
  52. Yarlett N., Hann A. C., Lloyd D., Williams A. G. 1981; Hydrogenosomes in the rumen protozoon Dasytricha ruminantium . Biochem J 200:365–372
    [Google Scholar]
  53. Yarlett N., Lloyd D., Williams A. G. 1982; Respiration of the rumen ciliate Dastricha ruminantium Schuberg. Biochem J 206:259–266
    [Google Scholar]
  54. Yarlett N., Hann A. C., Lloyd D., Williams A. G. 1983a; Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol 74B:357–364
    [Google Scholar]
  55. Yarlett N., Scott R. I., Williams A. G., Lloyd D. 1983b; A note on the effects of oxygen on hydrogen production by the rumen protozoon Dastricha ruminantium Schuberg. J Appl Bacteriol 55:359–361 [CrossRef]
    [Google Scholar]
  56. Yarlett N., Coleman G. S., Williams A. G., Lloyd D. 1984; Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21:15–19 [CrossRef]
    [Google Scholar]
  57. Yarlett N., Orpin C. G., Munn E. A., Yarlett N. C., Greenwood C. A. 1986; Hydrogenosomes in the rumen fungus Neocallimastix patriciarum . Biochem J 236:729–739
    [Google Scholar]
  58. Yarlett N., Rowlands C., Yarlett N. C., Evans J. C., Lloyd D. 1987; Respiration in the hydrogenosome-containing fungus Neocallimastix patriciarum . Arch Microbiol 148:25–28 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-727
Loading
/content/journal/micro/10.1099/00221287-148-3-727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error