1887

Abstract

An anaerobic bacterium, strain PCP-1 (T = type strain), which dechlorinates pentachlorophenol (PCP) to 3-chlorophenol, was isolated from a methanogenic consortium. This organism is a spore-forming rod-shaped bacterium that is nonmotile, asaccharolytic, and Gram stain negative but Gram type positive as determined by electron microscopic observations. Inorganic electron acceptors, such as sulfite, thiosulfate, and nitrate (but not sulfate), stimulate growth in the presence of pyruvate and yeast extract. The optimum pH and optimum temperature for growth are 7.5 and 38°C, respectively. The dechlorination pathway is: PCP → 2,3,4,5-tetra-chlorophenol → 3,4,5-trichlorophenol → 3,5-dichlorophenol → 3-chlorophenol. This bacterium dechlorinates several different chlorophenols , and positions; exceptions to this are 2,3-dichlorophenol, 2,5-dichlorophenol, 3,4-dichlorophenol, and the monochlorophenols. The time course of PCP dechlorination suggests that two enzyme systems are involved in dehalogenation in strain PCP-1. One system is inducible for dechlorination, and the second system is inducible for and dechlorinations. A 16S rRNA analysis revealed that strain PCP-1 exhibits 95% homology with JW/IU-DC1, an anaerobic bacterium which can dehalogenate chlorophenols only in positions. These results suggest that strain PCP-1 is a member of a new species and belongs to the recently proposed genus Strain PCP-1 differs from JW/IU-DC1 by its broader range of chlorophenol dechlorination. Strain PCP-1 is the type strain of the new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1010
1996-10-01
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1010.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1010&mimeType=html&fmt=ahah

References

  1. Alain R., Nadon F., Séguin C., Payment P., Trudel M. 1987; Rapid virus subunit visualization of samples on electron microscope grids. J. Virol. Methods 16:209–216
    [Google Scholar]
  2. Boyd S. S., Shelton D. R., Berry D., Tiedje J. M. 1983; Anaerobic biodegradation of phenolic compounds in digested sludge. Appl. Environ. Microbiol 46:50–54
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  4. Bruce K. D., Hiorns W. D., Hobman J. L., Osborn A. M., Strike P., Ritchie D. A. 1992; Amplification of DNA from native populations of soil bacteria by using polymerase chain reaction. Appl. Environ. Microbiol 58:3414–3416
    [Google Scholar]
  5. Cole J. R., Cascarelli A. L., Mohn W. W., Tiedje J. M. 1994; Isolation and characterization of a novel bacterium growing via reductive dehaloge nation of 2-chlorophenol. Appl. Environ. Microbiol 60:3536–3542
    [Google Scholar]
  6. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Femandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  7. DeWeerd K. A., Mandelco L., Tanner R. S., Woese C. R., Suflita J. M. 1990; Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate reducing bacterium. Arch. Microbiol 154:23–30
    [Google Scholar]
  8. Dolfing J. 1990; Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch. Microbiol 153:264–266
    [Google Scholar]
  9. Dolfing J., Tiedje J. M. 1991; Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs. Appl. Environ. Microbiol 57:820–824
    [Google Scholar]
  10. Felsenstein J. 1989; PHYLIP: phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  11. Juteau P., Beaudet R., McSween G., Lepine F., Bisailion J.-G. 1995; Study of the reductive dechlorination of pentachlorophenol by a methanogenic consortium. Can. J. Microbiol 46:862–868
    [Google Scholar]
  12. Juteau P., Beaudet R., McSween G., Lepine F., Milot S., Bisaillon J. G. 1995; Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium. Appl. Microbiol. Biotechnol 44:218–224
    [Google Scholar]
  13. Kimura M. 1980; A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol 16:111–120
    [Google Scholar]
  14. Li T., Bisaillon J. G., Villemur R., Letourneau L., Bernard K., Lepine F., Beaudet R. 1996; Isolation and characterization of a new bacterium carboxylating phenol to benzoic acid under anaerobic conditions. J. Bacteriol 178:2551–2558
    [Google Scholar]
  15. Linkfield T. G., Tiedje J. M. 1990; Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J. Ind. Microbiol 5:9–16
    [Google Scholar]
  16. Madsen T., Licht D. 1992; Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl. Environ. Microbiol 58:2874–2878
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  18. Mohn W. W., Kennedy K. J. 1992; Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl. Environ. Microbiol 58:1367–1370
    [Google Scholar]
  19. Mohn W. W., Tiedje J. M. 1991; Evidence for chemiosmotic coupling of reductive dehalogenation and ATP synthesis in Desulfomonile tiedjei. Arch. Microbiol 157:1–6
    [Google Scholar]
  20. Neefs J. M., Van de Peer Y., Hendriks L., De Watcher R. 1990; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 18:2237–2317
    [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  22. Utkin I., Dalton D. D., Wiegel J. 1995; Specificity of reductive dehalogenation of substituted ort/io-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl. Environ. Microbiol 61:346–351
    [Google Scholar]
  23. Utkin I., Woese C., Wiegel J. 1994; Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol 44:612–619
    [Google Scholar]
  24. Zhang X., Jones J., Rogers J. 1995 Isolation and partial characterization of an anaerobic dehalogenating microorganism, abstr. Q-ll 401 Abstracts of the 95th General Meeting of the American Society for Microbiology 1995 American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  25. Zuker M., Stiegler P. 1981; Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1010
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error