Abstract

The VISTA (Visible and Infrared Survey Telescope for Astronomy) survey of the Magellanic Clouds System (VMC) is collecting deep Ks-band time-series photometry of the pulsating variable stars hosted in the system formed by the two Magellanic Clouds and the Bridge connecting them. In this paper, we have analysed a sample of 130 Large Magellanic Cloud (LMC) Type II Cepheids (T2CEPs) found in tiles with complete or near-complete VMC observations for which identification and optical magnitudes were obtained from the OGLE III (Optical Gravitational Lensing Experiment) survey. We present J and Ks light curves for all 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables. We complement our near-infrared photometry with the V magnitudes from the OGLE III survey, allowing us to build a variety of period–luminosity (PL), period–luminosity–colour (PLC) and period–Wesenheit (PW) relationships, including any combination of the V, J, Ks filters and valid for BL Her and W Vir classes. These relationships were calibrated in terms of the LMC distance modulus, while an independent absolute calibration of the PL(Ks) and the PW(Ks, V) was derived on the basis of distances obtained from Hubble Space Telescope parallaxes and Baade–Wesselink technique. When applied to the LMC and to the Galactic globular clusters hosting T2CEPs, these relations seem to show that (1) the two Population II standard candles RR Lyrae and T2CEPs give results in excellent agreement with each other; (2) there is a discrepancy of ∼0.1 mag between Population II standard candles and classical Cepheids when the distances are gauged in a similar way for all the quoted pulsators. However, given the uncertainties, this discrepancy is within the formal 1σ uncertainties.

1 INTRODUCTION

The Magellanic Clouds (MCs) are fundamental benchmarks in the framework of stellar populations and galactic evolution investigations (see e.g. Harris & Zaritsky 2004, 2009; Ripepi et al. 2014b). The ongoing interaction with the Milky Way also allows us to study in detail the complex mechanisms that rule the interaction among galaxies (see e.g. Putman et al. 1998; Muller et al. 2004; Stanimirović, Staveley-Smith & Jones 2004; Bekki & Chiba 2007; Venzmer, Kerp & Kalberla 2012; For, Staveley-Smith & McClure-Griffiths 2013). Additionally, the MCs are more metal poor than our Galaxy and host a large population of young populous clusters; thus, they are useful to test the physical and numerical assumptions at the basis of stellar evolution codes (see e.g. Matteucci et al. 2002; Brocato et al. 2004; Neilson & Langer 2012).

The Large Magellanic Cloud (LMC) is also fundamental in the context of the extragalactic distance scale. Indeed, it represents the first critical step on which the calibration of classical Cepheid (CC) period–luminosity (PL) relations and in turn of secondary distance indicators relies (see e.g. Freedman et al. 2001; Riess et al. 2011; Walker 2012, and references therein). At the same time, the LMC hosts several thousand of RR Lyrae variables, which represent the most important Population II standard candles through the well-known MV(RR)–[Fe/H] and near-infrared (NIR) metal-dependent PL relations. Moreover, the LMC contains tens of thousands of intermediate-age red clump stars, which can profitably be used as accurate distance indicators (see e.g. Laney, Joner & Pietrzyński 2012; Subramanian & Subramaniam 2013). Hence, the LMC is the ideal place to compare the distance scales derived from Population I and II indicators (see e.g. Clementini et al. 2003; Walker 2012; de Grijs, Wicker & Bono 2014, and references therein). In particular, NIR observations of pulsating stars (see e.g. Ripepi et al. 2012a, 2014a; Moretti et al. 2014, and references therein) provide stringent constraints to the calibration of their distance scale thanks to the existence of well-defined PL, period–luminosity–colour (PLC) and period–Wesenheit (PW) relations at these wavelengths (see Madore 1982; Madore & Freedman 1991, for the definition of Wesenheit functions).

The VISTA1 near-infrared YJKs survey of the Magellanic Clouds system (VMC; Cioni et al. 2011) aims at observing a wide area across the Magellanic system, including the relatively unexplored Bridge connecting the two Clouds. This European Southern Observatory (ESO) public survey relies on the VISTA InfraRed CAMera (VIRCAM) (Dalton et al. 2006) of the ESO VISTA telescope (Emerson, McPherson & Sutherland 2006) to obtain deep NIR photometric data in the Y, J and Ks filters. The main aims are (i) to reconstruct the spatially resolved star formation history and (ii) to infer an accurate 3D map of the whole Magellanic system. The properties of pulsating stars observed by VMC and adopted as tracers of three different stellar populations, namely CCs (younger than few hundred Myr), RR Lyrae stars (older than 9–10 Gyr) and anomalous Cepheids (traditionally associated with an intermediate-age population with few Gyr), have been discussed in recent papers by our team (Ripepi et al. 2012a,b, 2014a; Moretti et al. 2014). In these papers, relevant results on the calibration of the distance scales for all these important standard candles have been provided.

An additional class of Population II pulsating stars is represented by the so-called Type II Cepheids (T2CEPs; see e.g. Caputo 1998; Sandage & Tammann 2006). These objects show periods from ∼1 to ∼20 d and are observed in Galactic globular clusters (GGCs) with few RR Lyrae stars and blue horizontal branch morphology. They are brighter but less massive than RR Lyrae stars for similar metal content (see e.g. Caputo et al. 2004). T2CEPs are often separated into BL Herculis stars (BL Her; periods between 1 and 4 d) and W Virginis stars (W Vir; periods between 4 and 20 d) and, as discussed by several authors (e.g. Wallerstein & Cox 1984; Gingold 1985; Harris 1985; Bono, Caputo & Santolamazza 1997b; Wallerstein 2002), originate from hot, low-mass stellar structures, starting their central He burning on the blue side of the RR Lyrae gap. Moreover, according to several authors (see e.g. Feast et al. 2008; Feast 2010, and references therein) RV Tauri stars, with periods from about 20 to 150 d and often irregular light curves, are considered as an additional subgroup of the T2CEP class. Their evolutionary phase corresponds to the post-asymptotic giant branch phase path towards planetary nebula status. This feature corresponds to the latest evolution of intermediate mass stellar structures and for this reason the claimed link with the low-mass W Vir stars should be considered with caution.

In addition to the three quoted groups, Soszyński et al. (2008) suggested the existence of a new sub-class of T2CEPs, the so-called peculiar W Vir (pW Vir) stars. These objects show peculiar light curves and, at constant period, are usually brighter than normal T2CEPs. It is likely that pW Vir belong to binary systems; however, the true nature of these variables remains uncertain.

Nemec, Nemec & Lutz (1994) derived metal-dependent PL relations in various optical photometric bands both in the fundamental and in the first overtone modes but subsequently Kubiak & Udalski (2003) found that all the observed T2CEPs in the OGLE II (Optical Gravitational Lensing Experiment; Udalski et al. 1992) sample, with periods in the range ∼0.7 to about 10 d, satisfy the same PL relation. This result was then confirmed by Pritzl et al. (2003) and Matsunaga et al. (2006) for GGCs, by Groenewegen, Udalski & Bono (2008) for the Galactic bulge and again by Soszyński et al. (2008) on the basis of OGLE III data.

From the theoretical point of view, Di Criscienzo et al. (2007) and Marconi & Di Criscienzo (2007) have investigated the properties of BL Her stars, by adopting an updated evolutionary and pulsational scenario for metallicities in the range of Z = 0.0001–0.004. The predicted PL and PW relations derived on the basis of these models were found to be in good agreement with the slopes determined by the variables observed in GGCs. Moreover, the distances obtained from the theoretical relations for T2CEPs agree within the errors with the RR Lyrae-based values.

In the NIR bands, a tight PL for 46 T2CEPs hosted in GGCs was found by Matsunaga et al. (2006). Such relations were calibrated by Feast et al. (2008) by means of pulsation parallaxes of nearby T2CEPs and used to estimate the distances of the LMC and the Galactic Centre. Subsequent investigations (Matsunaga, Feast & Menzies 2009; Matsunaga, Feast & Soszyński 2011) confirmed the existence of such tight PL relations in the J, H, Ks bands for the T2CEPs belonging to the LMC and Small Magellanic Cloud found by the OGLE III collaboration (Soszyński et al. 2008). However, the NIR observations at the base of these studies consist of only two epochs for each variable light curve obtained with the Infrared Survey Facility (IRSF) 1.4 m telescope in South Africa. The average magnitudes of the T2CEPs analysed in that paper were derived by comparison with the OGLE III I-band photometry.

In the context of the VMC survey, we present here the NIR results for a significant sample of T2CEPs in the LMC, based on high precision and well-sampled Ks-band light curves.

The VMC data for the T2CEPs are presented in Section 2. The PL, PLC and PW relations involving the J and Ks bands are calculated in Section 3. Section 4 includes the absolute calibration of such relations and a comparison with the literature. In Sections 5, we discuss the results; a concise summary (Section 6) concludes the paper.

2 T2CEPs IN THE VMC SURVEY

T2CEPs in the LMC were identified and studied in the V, I optical bands by Soszyński et al. (2008) in the context of the OGLE III project.2 We have also considered the recent early release of the OGLE IV survey (Soszyński et al. 2012), including the South Ecliptic Pole which, in turn, lies within our tile LMC 8_8. In these surveys, a total of 207 T2CEPs were found (203 by OGLE III and 4 by OGLE IV3), of which 65 are BL Her, 98 are W Vir and 44 are RV Tau pulsators.

In this paper, we present results for the T2CEPs included on 13 ‘tiles’ (1.5 deg2) completely or nearly completely observed, processed and catalogued by the VMC survey as of 2013 March (and overlapping with the area investigated by OGLE III), namely the tiles LMC 4_6, 4_8, 5_3, 5_5, 5_7, 6_4, 6_5, 6_6, 6_8, 7_3, 7_5, 7_7 and 8_8 (see Fig. 1 and Table 1). Tile LMC 6_6 is centred on the well-known 30 Dor star-forming region; tiles LMC 5_5, 6_4 and 6_5 are placed on the bar of the LMC. The remaining tiles lie in less crowded regions of the galaxy.

Figure 1.

Distribution of the known T2CEPs over the LMC (projected on the sky adopting α0 = 81.0 deg and δ0 = −69.0 deg). Grey symbols show all the T2CEPs detected by the OGLE collaboration, whereas black filled circles present the T2CEPs falling in the VMC tiles and studied in this paper. Thin blue and thick green squares (distorted by the projection into the sky) show part of the VMC tiles in the LMC and the 13 tiles treated in this paper, respectively. The thick red and light blue lines show the areas covered by OGLE III and IV (released to date), respectively.

Table 1.

Number of T2CEPs in the 13 VMC tiles analysed in this paper, according to OGLE III/IV.

TileRA (centre)Dec. (centre)nT2CEP
LMCJ(2000)J(2000)
LMC 4_605:38:00.41−72:17:20.0|$\phantom{0}$|1
LMC 4_806:06:32.95−72:08:31.2|$\phantom{0}$|2
LMC 5_304:58:11.66−70:35:28.0|$\phantom{0}$|6
LMC 5_505:24:30.34−70:48:34.217
LMC 5_705:51:04.87−70:47:31.2|$\phantom{0}$|4
LMC 6_405:12:55.80−69:16:39.433
LMC 6_505:25:16.27−69:21:08.331
LMC 6_605:37:40.01−69:22:18.120
LMC 6_806:02:22.00−69:14:42.4|$\phantom{0}$|0
LMC 7_305:02:55.20−67:42:14.8|$\phantom{0}$|9
LMC 7_505:25:58.44−67:53:42.0|$\phantom{0}$|6
LMC 7_705:49:12.19−67:52:45.5|$\phantom{0}$|1
LMC 8_805:59:23.14−66:20:28.7|$\phantom{0}$|0
TileRA (centre)Dec. (centre)nT2CEP
LMCJ(2000)J(2000)
LMC 4_605:38:00.41−72:17:20.0|$\phantom{0}$|1
LMC 4_806:06:32.95−72:08:31.2|$\phantom{0}$|2
LMC 5_304:58:11.66−70:35:28.0|$\phantom{0}$|6
LMC 5_505:24:30.34−70:48:34.217
LMC 5_705:51:04.87−70:47:31.2|$\phantom{0}$|4
LMC 6_405:12:55.80−69:16:39.433
LMC 6_505:25:16.27−69:21:08.331
LMC 6_605:37:40.01−69:22:18.120
LMC 6_806:02:22.00−69:14:42.4|$\phantom{0}$|0
LMC 7_305:02:55.20−67:42:14.8|$\phantom{0}$|9
LMC 7_505:25:58.44−67:53:42.0|$\phantom{0}$|6
LMC 7_705:49:12.19−67:52:45.5|$\phantom{0}$|1
LMC 8_805:59:23.14−66:20:28.7|$\phantom{0}$|0
Table 1.

Number of T2CEPs in the 13 VMC tiles analysed in this paper, according to OGLE III/IV.

TileRA (centre)Dec. (centre)nT2CEP
LMCJ(2000)J(2000)
LMC 4_605:38:00.41−72:17:20.0|$\phantom{0}$|1
LMC 4_806:06:32.95−72:08:31.2|$\phantom{0}$|2
LMC 5_304:58:11.66−70:35:28.0|$\phantom{0}$|6
LMC 5_505:24:30.34−70:48:34.217
LMC 5_705:51:04.87−70:47:31.2|$\phantom{0}$|4
LMC 6_405:12:55.80−69:16:39.433
LMC 6_505:25:16.27−69:21:08.331
LMC 6_605:37:40.01−69:22:18.120
LMC 6_806:02:22.00−69:14:42.4|$\phantom{0}$|0
LMC 7_305:02:55.20−67:42:14.8|$\phantom{0}$|9
LMC 7_505:25:58.44−67:53:42.0|$\phantom{0}$|6
LMC 7_705:49:12.19−67:52:45.5|$\phantom{0}$|1
LMC 8_805:59:23.14−66:20:28.7|$\phantom{0}$|0
TileRA (centre)Dec. (centre)nT2CEP
LMCJ(2000)J(2000)
LMC 4_605:38:00.41−72:17:20.0|$\phantom{0}$|1
LMC 4_806:06:32.95−72:08:31.2|$\phantom{0}$|2
LMC 5_304:58:11.66−70:35:28.0|$\phantom{0}$|6
LMC 5_505:24:30.34−70:48:34.217
LMC 5_705:51:04.87−70:47:31.2|$\phantom{0}$|4
LMC 6_405:12:55.80−69:16:39.433
LMC 6_505:25:16.27−69:21:08.331
LMC 6_605:37:40.01−69:22:18.120
LMC 6_806:02:22.00−69:14:42.4|$\phantom{0}$|0
LMC 7_305:02:55.20−67:42:14.8|$\phantom{0}$|9
LMC 7_505:25:58.44−67:53:42.0|$\phantom{0}$|6
LMC 7_705:49:12.19−67:52:45.5|$\phantom{0}$|1
LMC 8_805:59:23.14−66:20:28.7|$\phantom{0}$|0

A detailed description of the general observing strategy of the VMC survey can be found in Cioni et al. (2011). As for the variable stars, the specific procedures adopted to study these objects were discussed in Moretti et al. (2014). Here, we only briefly recall that the VMC Ks-band time-series observations were scheduled in 12 separate epochs distributed over several consecutive months. This strategy allows us to obtain well-sampled light curves for a variety of variable types (including RR Lyrae variables and Cepheids of all types). Concerning the J and Y bands, the average number of epochs is 3, as a result of the observing strategy in these bands (i.e. monitoring was not planned). Hence, some epochs could occur in the same night and even one after the other. We note that in this paper, we did not consider the Y-band data for several reasons: (i) this filter is very rarely used in the context of distance scale; (ii) its photometric zero-point (ZP) is difficult to calibrate (no 2MASS measures); (iii) because the Y band is bluer than the typical NIR bands, and the PL, PLC and PW relations in this filter are expected to be more dispersed (see e.g. Madore & Freedman 2012) and of lesser utility with respect to those in J and Ks.

The VMC data, processed through the pipeline (Irwin et al. 2004) of the VISTA Data Flow System (VDFS; Emerson et al. 2004) are in the VISTA photometric system (Vegamag = 0). The time-series photometry used in this paper was retrieved from the VISTA Science Archive4 (VSA; Cross et al. 2012). For details about the data reduction, we refer the reader to the aforementioned papers. Nevertheless, we underline two characteristics of the data reduction which we think may have importance in the subsequent discussion. First, the pipeline is able to correct the photometry of stars close to the saturation limit (Irwin 2009). This is relevant in the context of this paper because the RV Tau variables discussed here are very bright objects Ks ∼ 12–13 mag, close to the saturation limits of the VMC survey. The photometry of these stars takes advantage of the VDFS ability to treat saturated images; however, as we will see below, the corrections applied are not always sufficient to fully recover the data. Secondly, the data retrieved from VSA include quality flags which are very useful to understand if the images have problems. We shall use this information later in this paper.

According to OGLE III/IV, 130 T2CEPs are expected to lie in the 13 tiles analysed in this paper. Note that no T2CEP from OGLE III or OGLE IV falls inside our tiles 6_8 or 8_8, respectively. Hence, in the following we only use OGLE III data. Fig. 1 and Table 1 show the distribution of such stars through the VMC tiles.

Table 2 lists the 130 T2CEPs analysed here, together with their main properties as measured by OGLE III and the information about the VMC tile they belong to, as well as the number of epochs of observations in the J and Ks bands. In total, our sample is composed of 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables, corresponding to 63, 63 (75 per cent) and 61 per cent of the known LMC populations of the three different variable classes, respectively.

Table 2.

Cross-identification and main characteristics of the T2CEPs in the 13 ‘tiles’ analysed in this paper. The columns report (1) OGLE identification; (2) right ascension (OGLE); (3) declination (OGLE); (4) variability class; (5) intensity-averaged I magnitude (OGLE); (6) intensity-averaged V magnitude (OGLE); (7) period (OGLE); (8) epoch of maximum light −2450 000 d (OGLE); (9) VMC identification as in the internal VSA release VMC v1.2/v1.3(2013 August 5); (10) VMC tile; (11) number of J and Ks epochs, respectively; (12) notes on individual stars.

IDRADec.TypeIVPeriodEpochVMC-IDTileNEpochsNotes
J2000J2000(mag)(mag)(d)(d)J,Ks
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
OGLE-LMC-T2CEP-1235:26:19.26−70:15:34.7BL Her18.23318.7231.002 626454.802 335583613252735_54,15(a); (b)
OGLE-LMC-T2CEP-0695:14:56.77−69:40:22.4BL Her18.37218.9191.021 254457.218 155583555222736_44,14(a); (b); (c)
OGLE-LMC-T2CEP-1145:23:29.75−68:19:07.2BL Her18.06819.0201.091 0892167.449 395583535672287_54,14(b)
OGLE-LMC-T2CEP-0204:59:06.12−67:45:24.6BL Her18.03618.4691.108 1262166.108 545583514370657_34,16(a); (b)
OGLE-LMC-T2CEP-0715:15:08.63−68:54:53.5BL Her17.87218.3821.152 164457.433 795583549265126_44,14
OGLE-LMC-T2CEP-0895:18:35.72−69:45:45.7BL Her18.03218.4921.167 298455.651 665583555690686_411,23
OGLE-LMC-T2CEP-0615:12:30.42−69:07:16.2BL Her18.01818.5881.181 512457.305 015583550981306_44,14
OGLE-LMC-T2CEP-1075:22:05.79−69:40:24.5BL Her17.68418.4821.209 145455.573 775583567041396_57,9(d); (e)
OGLE-LMC-T2CEP-0775:16:21.44−69:36:59.2BL Her17.76218.0391.213 802456.996 035583554729306_44,14
OGLE-LMC-T2CEP-1655:38:15.29−69:28:57.1BL Her18.76119.7231.240 8332187.683 395583576598366_65,14
OGLE-LMC-T2CEP-1025:21:19.67−69:56:56.2BL Her17.75818.2311.266 018455.072 855583569826256_57,9(d); (e)
OGLE-LMC-T2CEP-1945:57:12.03−72:17:13.3BL Her17.87418.4471.314 4672194.110 085583673671744_85,10
OGLE-LMC-T2CEP-1365:29:48.11−69:35:32.1BL Her17.82318.0951.323 038454.373 195583566024716_57,9(b)
OGLE-LMC-T2CEP-1385:30:10.87−68:49:17.1BL Her18.05918.8271.393 5912167.524 915583560099096_57,9(b); (d)
OGLE-LMC-T2CEP-1095:22:12.83−69:41:50.6BL Her19.55921.2121.414 553454.695 805583567270026_57,9(c); (d)
OGLE-LMC-T2CEP-1055:21:58.32−70:16:35.1BL Her17.64518.2061.489 298830.773 865583613512175_54,15
OGLE-LMC-T2CEP-1225:25:48.19−68:29:11.4BL Her18.24119.0281.538 6692167.450 875583536538197_54,14
OGLE-LMC-T2CEP-1715:39:40.96−69:58:01.3BL Her17.82418.5121.554 749726.828 055583580123796_65,14
OGLE-LMC-T2CEP-0685:14:27.05−68:58:02.0BL Her17.67118.2641.609 301456.512 945583549689046_44,14
OGLE-LMC-T2CEP-1245:26:55.80−68:51:53.9BL Her17.88918.6141.734 8672167.638 185583560405306_57,9
OGLE-LMC-T2CEP-0084:51:11.51−69:57:27.0BL Her17.84218.5851.746 0992165.203 695583586567585_34,11(c); (d); (f)
OGLE-LMC-T2CEP-1425:30:34.92−68:06:15.2BL Her17.58018.4581.760 7532167.011 205583534505427_54,13(a); (b); (g)
OGLE-LMC-T2CEP-0845:17:07.50−69:27:34.1BL Her17.51217.8411.770 840456.088 005583553480316_41,8(a); (b); (g)
OGLE-LMC-T2CEP-1415:30:23.32−71:39:00.6BL Her17.97518.7571.822 9542166.564 375583677672914_66,14
OGLE-LMC-T2CEP-1405:30:22.71−69:15:38.6BL Her17.76018.5081.841 1442166.657 005583563117596_57,9
OGLE-LMC-T2CEP-1445:31:19.82−68:51:54.9BL Her17.75018.5451.937 4502166.593 875583560354256_510,20(a); (b); (d); (f)
OGLE-LMC-T2CEP-1305:29:04.24−70:41:37.9BL Her17.52718.1241.944 6942167.584 695583616580785_54,15
OGLE-LMC-T2CEP-0885:18:33.57−70:50:19.2BL Her17.21217.3531.950 7492161.242 955583617792175_54,15(c); (d); (e)
OGLE-LMC-T2CEP-1165:23:55.90−69:25:30.1BL Her17.82518.6581.966 679445.612 785583564647086_57,9
OGLE-LMC-T2CEP-1215:25:42.79−70:20:46.1BL Her17.71318.4302.061 3652166.374 795583614026535_54,15
OGLE-LMC-T2CEP-1665:38:29.09−69:45:06.3BL Her16.92717.6962.110 5992186.166 945583578462076_65,14(h)
OGLE-LMC-T2CEP-0645:13:55.87−68:37:52.1BL Her17.51418.1512.127 8912167.008 435583547451986_44,14
OGLE-LMC-T2CEP-1675:39:02.56−69:37:38.5BL Her17.78118.5972.311 8242187.148 395583577563886_65,14
OGLE-LMC-T2CEP-0925:19:23.63−70:02:56.8BL Her17.40118.1432.616 7682122.719 335583570724916_58,24
OGLE-LMC-T2CEP-1485:31:52.26−69:30:26.4BL Her17.44218.1942.671 734453.911 385583576786156_612,23
OGLE-LMC-T2CEP-1956:02:46.27−72:12:47.0BL Her17.34218.0502.752 9292186.990 005583673542174_85,10
OGLE-LMC-T2CEP-1135:23:06.33−69:32:20.5BL Her17.13717.8113.085 460455.010 035583565686196_57,9(b); (e)
OGLE-LMC-T2CEP-0495:09:21.88−69:36:03.0BL Her17.13017.7033.235 275723.912 435583555011906_44,14(b)
OGLE-LMC-T2CEP-1455:31:46.42−68:58:44.0BL Her16.72617.2093.337 3022167.280 235583573630196_612,23
OGLE-LMC-T2CEP-0855:18:12.87−71:17:15.4BL Her17.14217.8883.405 0952160.554 575583620472855_54,15
OGLE-LMC-T2CEP-0305:03:35.82−68:10:16.2BL Her16.94817.7553.935 3692166.206 735583516635607_34,16(a); (b); (g)
OGLE-LMC-T2CEP-1345:29:28.49−69:48:00.4pW Vir16.26816.8514.075 726454.540 805583568093006_57,9
OGLE-LMC-T2CEP-1735:39:49.93−69:50:52.9W Vir18.41620.1494.147 881724.817 275583579184886_65,14(a); (b)
OGLE-LMC-T2CEP-1205:25:29.55−68:48:11.8W Vir17.00217.8804.559 0532165.735 885583560059966_57,9
OGLE-LMC-T2CEP-0525:09:59.34−69:58:28.7pW Vir16.39516.8614.687 9252164.810 825583557374976_44,14
OGLE-LMC-T2CEP-0985:20:25.00−70:11:08.7pW Vir14.37414.6714.973 737829.464 705583612781435_54,15
OGLE-LMC-T2CEP-0955:20:09.84−68:18:35.3W Vir17.00917.8735.000 1222121.240 285583535716847_54,14(b); (f); (g); (h)
OGLE-LMC-T2CEP-0875:18:21.64−69:40:45.2W Vir16.88717.7705.184 979454.045 235583555105416_411,23
OGLE-LMC-T2CEP-0235:00:13.00−67:42:43.7pW Vir15.51116.1015.234 8012163.878 395583513996607_34,16
OGLE-LMC-T2CEP-0835:16:58.99−69:51:19.3pW Vir16.53117.3205.967 6502119.656 835583556349886_44,14
OGLE-LMC-T2CEP-0625:13:19.12−69:38:57.6W Vir17.33818.4906.046 676453.313 055583555135926_44,14(b); (e)
OGLE-LMC-T2CEP-1335:29:23.48−70:24:28.5W Vir16.67117.4976.281 9552162.687 875583614479935_54,15
OGLE-LMC-T2CEP-1375:30:03.55−69:38:02.8W Vir16.72817.6336.362 350453.960 885583566448916_57,9
OGLE-LMC-T2CEP-1835:44:32.99−69:48:21.8W Vir17.29318.6006.509 6272183.465 565583578931576_65,13
OGLE-LMC-T2CEP-0435:06:00.44−69:55:14.6W Vir16.85117.7746.559 427462.418 325583557272586_44,14(b); (f); (e); (g); (h)
OGLE-LMC-T2CEP-1595:36:42.13−69:31:11.7W Vir16.80517.7696.625 5702182.537 725583576842536_65,14
OGLE-LMC-T2CEP-1175:24:41.50−71:06:44.6W Vir16.64017.5396.629 3492165.529 375583619340915_54,15
OGLE-LMC-T2CEP-1065:22:02.03−69:27:25.3W Vir16.61217.4936.706 736455.584 835583564983526_57,9
OGLE-LMC-T2CEP-0785:16:29.09−69:24:09.0pW Vir16.30817.2066.716 294455.317 685583553019646_44,14
OGLE-LMC-T2CEP-0635:13:43.86−69:50:41.1W Vir16.66217.5536.924 5802165.500 325583556429076_44,14
OGLE-LMC-T2CEP-1105:22:19.48−68:53:50.0W Vir16.76317.7057.078 4682151.910 515583560711796_57,9
OGLE-LMC-T2CEP-1815:43:37.42−70:38:04.9pW Vir16.19316.9727.212 532724.380 265583603736165_74,8
OGLE-LMC-T2CEP-0475:07:46.53−69:37:00.3W Vir16.61617.5367.286 212723.500 425583555241746_44,14
OGLE-LMC-T2CEP-0565:11:19.35−69:34:32.3W Vir16.67717.6547.289 638452.879 685583554693546_44,14
OGLE-LMC-T2CEP-1005:21:14.64−70:23:15.4W Vir16.64217.4077.431 095825.702 185583614484065_54,15
OGLE-LMC-T2CEP-1115:22:22.30−70:52:46.8W Vir16.54217.4407.495 684829.557 735583617945955_54,15
OGLE-LMC-T2CEP-1705:39:38.12−68:48:24.9W Vir16.703−99.9907.682 9062181.190 875583572681166_65,14(i)
OGLE-LMC-T2CEP-1515:34:35.73−69:59:14.9W Vir16.47917.3847.887 246455.117 565583580350156_65,14
OGLE-LMC-T2CEP-1795:43:04.02−70:01:33.6W Vir16.74417.8058.050 0652185.448 135583580640656_64,14
OGLE-LMC-T2CEP-1825:43:46.89−70:42:36.5W Vir16.31217.2658.226 4192188.390 825583604305535_74,8
OGLE-LMC-T2CEP-0945:19:53.20−69:53:09.9W Vir16.58817.5298.468 4902120.738 415583569235556_57,9
OGLE-LMC-T2CEP-0194:58:49.42−68:04:27.8pW Vir15.98916.8538.674 8632162.749 385583516446777_34,16
OGLE-LMC-T2CEP-0395:05:11.31−67:12:45.3W Vir16.32217.1928.715 8372166.319 775583510839137_34,16
OGLE-LMC-T2CEP-0285:03:00.85−70:07:33.7pW Vir15.54316.0458.784 8072168.948 005583586687715_34,9
OGLE-LMC-T2CEP-0745:15:48.75−68:48:48.1W Vir16.07016.8928.988 3442123.389 755583548518396_44,14
OGLE-LMC-T2CEP-1525:34:37.58−70:01:08.5W Vir16.45317.3239.314 921453.026 635583580536326_65,14
OGLE-LMC-T2CEP-0214:59:34.97−71:15:31.2pW Vir15.88416.5809.759 5022161.102 775583594206325_34,11
OGLE-LMC-T2CEP-1325:29:08.23−69:56:04.3pW Vir15.81816.54810.017 829448.218 175583569399816_57,9
OGLE-LMC-T2CEP-1465:31:48.01−68:49:12.1W Vir16.39217.34710.079 5932161.817 035583572772336_612,23
OGLE-LMC-T2CEP-0975:20:20.58−69:12:20.9W Vir16.17717.06410.510 167446.108 165583562944426_57,9
OGLE-LMC-T2CEP-0224:59:58.56−70:34:27.8W Vir16.27117.17910.716 7802157.787 145583590203695_34,11
OGLE-LMC-T2CEP-2015:15:12.67−69:13:08.0pW Vir14.61115.15211.007 243456.113 015583551594876_44,14
OGLE-LMC-T2CEP-1015:21:18.87−69:11:47.3W Vir16.03516.83811.418 560444.882 815583562836726_57,9
OGLE-LMC-T2CEP-0134:55:24.41−69:55:43.4W Vir16.18417.11911.544 6112157.451 855583585874185_34,11
OGLE-LMC-T2CEP-1785:42:19.01−70:24:08.1W Vir16.32617.40612.212 367726.431 605583601984485_74,8
OGLE-LMC-T2CEP-1275:27:59.80−69:23:27.5W Vir16.12017.09212.669 118454.171 115583564206966_57,9
OGLE-LMC-T2CEP-1185:25:15.05−68:09:11.7W Vir16.10317.03712.698 5802163.344 775583534775767_54,14
OGLE-LMC-T2CEP-1035:21:35.27−70:13:25.7W Vir16.03916.99512.908 278824.386 165583613099705_54,15
OGLE-LMC-T2CEP-0445:06:28.86−69:43:58.8W Vir16.09917.10813.270 100464.577 265583556114436_44,14
OGLE-LMC-T2CEP-0265:02:11.56−68:20:16.0W Vir16.09117.02613.577 8692156.872 525583517866147_34,16
OGLE-LMC-T2CEP-0965:20:10.42−68:48:39.2W Vir15.91816.83213.925 7222129.223 745583560250756_57,9
OGLE-LMC-T2CEP-1575:36:02.60−69:27:16.1W Vir16.04517.05014.334 6472181.193 125583576397016_65,14
OGLE-LMC-T2CEP-0174:56:16.02−68:16:16.4W Vir15.98616.96814.454 7542157.707 445583517915987_34,16
OGLE-LMC-T2CEP-1435:31:09.75−69:15:48.9W Vir15.80616.70114.570 1852166.573 165583563130346_512,23
OGLE-LMC-T2CEP-0465:07:38.94−68:20:05.9W Vir15.54716.41514.743 7962162.697 055583517409407_34,16(b); (c); (d); (f)
OGLE-LMC-T2CEP-1395:30:22.56−69:09:12.1W Vir15.96817.00314.780 4102156.199 005583562357086_57,9
OGLE-LMC-T2CEP-1775:40:36.54−69:13:04.3W Vir16.13217.24015.035 9032178.318 375583574922076_65,14
OGLE-LMC-T2CEP-0995:20:44.48−69:01:48.4W Vir15.93216.99915.486 7882111.721 125583561671636_57,9
OGLE-LMC-T2CEP-0865:18:17.80−69:43:27.7W Vir15.62916.48615.845 500452.844 785583555445756_411,23
OGLE-LMC-T2CEP-1265:27:53.42−70:51:30.9W Vir16.21017.43616.326 7782167.506 615583617700865_54,15
OGLE-LMC-T2CEP-0575:11:21.13−68:40:13.3W Vir15.74916.70716.632 0412159.167 415583547816736_44,14
OGLE-LMC-T2CEP-0935:19:26.45−69:51:51.0W Vir15.13015.86117.593 049446.066 335583569041426_57,9(j)
OGLE-LMC-T2CEP-1285:28:43.81−70:14:02.3W Vir15.51716.46018.492 694453.208 285583613001815_54,15
OGLE-LMC-T2CEP-0585:11:33.52−68:35:53.7RV Tau15.51116.59421.482 9512167.453 985583547374266_44,14
OGLE-LMC-T2CEP-1045:21:49.10−70:04:34.3RV Tau14.93715.83024.879 948447.757 455583611704505_511,24
OGLE-LMC-T2CEP-1155:23:43.53−69:32:06.8RV Tau15.59316.65124.966 9132145.848 895583565661556_57,9
OGLE-LMC-T2CEP-1925:53:55.69−70:17:11.4RV Tau15.23316.14826.194 0012181.449 825583601500985_74,8
OGLE-LMC-T2CEP-1355:29:38.50−69:15:12.2RV Tau15.19416.16226.522 3642144.300 375583563085406_57,9
OGLE-LMC-T2CEP-1085:22:11.27−68:11:31.3RV Tau14.74615.47730.010 8432113.813 365583535049107_54,14(k)
OGLE-LMC-T2CEP-1625:37:44.95−69:54:16.5RV Tau15.11216.20030.394 148706.209 905583579616496_65,14
OGLE-LMC-T2CEP-1805:43:12.87−68:33:57.1RV Tau14.50215.30330.996 3152178.207 915583528773747_74,8
OGLE-LMC-T2CEP-1195:25:19.48−70:54:10.0RV Tau14.39115.22533.825 0942158.593 495583618035545_54,15
OGLE-LMC-T2CEP-0505:09:26.15−68:50:05.0RV Tau14.96415.66134.748 344713.647 555583549032696_44,14
OGLE-LMC-T2CEP-2005:13:56.43−69:31:58.3RV Tau15.09216.12434.916 555423.706 705583554233196_44,14(k)
OGLE-LMC-T2CEP-0655:14:00.75−68:57:56.8RV Tau14.69915.61135.054 940455.175 145583549706926_44,14(k)
OGLE-LMC-T2CEP-0915:18:45.48−69:03:21.6RV Tau14.20314.89935.749 346425.386 225583550156026_411,23
OGLE-LMC-T2CEP-2035:22:33.79−69:38:08.5RV Tau15.39516.72337.126 746448.749 615583566654856_57,9
OGLE-LMC-T2CEP-2025:21:49.09−70:46:01.4RV Tau15.16716.35938.135 567812.559 235583617226145_54,15
OGLE-LMC-T2CEP-1125:22:58.36−69:26:20.9RV Tau14.06514.74939.397 704421.634 295583564786746_57,9
OGLE-LMC-T2CEP-0515:09:41.93−68:51:25.0RV Tau14.56915.44040.606 400720.056 755583549172786_44,14(k)
OGLE-LMC-T2CEP-0805:16:47.43−69:44:15.1RV Tau14.34115.17540.916 413436.421 115583555603796_44,14
OGLE-LMC-T2CEP-1495:32:54.46−69:35:13.2RV Tau14.15114.86842.480 6132149.996 735583577302696_65,14
OGLE-LMC-T2CEP-0325:03:56.31−67:27:24.6RV Tau14.01114.99244.561 1952152.876 235583512264987_34,16
OGLE-LMC-T2CEP-1475:31:51.00−69:11:46.3RV Tau13.67814.39146.795 8422135.147 585583574811876_69,23
OGLE-LMC-T2CEP-1745:40:00.50−69:42:14.7RV Tau13.69314.45746.818 9562166.799 275583578148836_65,14
OGLE-LMC-T2CEP-0675:14:18.11−69:12:35.0RV Tau13.82514.62748.231 705442.942 735583551603136_44,14
OGLE-LMC-T2CEP-0755:16:16.06−69:43:36.9RV Tau14.56815.72850.186 569430.990 795583555543096_44,14
OGLE-LMC-T2CEP-0144:55:35.40−69:54:04.2RV Tau14.31215.10361.875 7132161.688 725583585644675_34,11(k)
OGLE-LMC-T2CEP-1295:28:54.60−69:52:41.1RV Tau14.09614.81362.508 947397.727 805583568857946_57,9
OGLE-LMC-T2CEP-0455:06:34.06−69:30:03.7RV Tau13.72914.78763.386 3392148.644 835583554471146_44,14
IDRADec.TypeIVPeriodEpochVMC-IDTileNEpochsNotes
J2000J2000(mag)(mag)(d)(d)J,Ks
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
OGLE-LMC-T2CEP-1235:26:19.26−70:15:34.7BL Her18.23318.7231.002 626454.802 335583613252735_54,15(a); (b)
OGLE-LMC-T2CEP-0695:14:56.77−69:40:22.4BL Her18.37218.9191.021 254457.218 155583555222736_44,14(a); (b); (c)
OGLE-LMC-T2CEP-1145:23:29.75−68:19:07.2BL Her18.06819.0201.091 0892167.449 395583535672287_54,14(b)
OGLE-LMC-T2CEP-0204:59:06.12−67:45:24.6BL Her18.03618.4691.108 1262166.108 545583514370657_34,16(a); (b)
OGLE-LMC-T2CEP-0715:15:08.63−68:54:53.5BL Her17.87218.3821.152 164457.433 795583549265126_44,14
OGLE-LMC-T2CEP-0895:18:35.72−69:45:45.7BL Her18.03218.4921.167 298455.651 665583555690686_411,23
OGLE-LMC-T2CEP-0615:12:30.42−69:07:16.2BL Her18.01818.5881.181 512457.305 015583550981306_44,14
OGLE-LMC-T2CEP-1075:22:05.79−69:40:24.5BL Her17.68418.4821.209 145455.573 775583567041396_57,9(d); (e)
OGLE-LMC-T2CEP-0775:16:21.44−69:36:59.2BL Her17.76218.0391.213 802456.996 035583554729306_44,14
OGLE-LMC-T2CEP-1655:38:15.29−69:28:57.1BL Her18.76119.7231.240 8332187.683 395583576598366_65,14
OGLE-LMC-T2CEP-1025:21:19.67−69:56:56.2BL Her17.75818.2311.266 018455.072 855583569826256_57,9(d); (e)
OGLE-LMC-T2CEP-1945:57:12.03−72:17:13.3BL Her17.87418.4471.314 4672194.110 085583673671744_85,10
OGLE-LMC-T2CEP-1365:29:48.11−69:35:32.1BL Her17.82318.0951.323 038454.373 195583566024716_57,9(b)
OGLE-LMC-T2CEP-1385:30:10.87−68:49:17.1BL Her18.05918.8271.393 5912167.524 915583560099096_57,9(b); (d)
OGLE-LMC-T2CEP-1095:22:12.83−69:41:50.6BL Her19.55921.2121.414 553454.695 805583567270026_57,9(c); (d)
OGLE-LMC-T2CEP-1055:21:58.32−70:16:35.1BL Her17.64518.2061.489 298830.773 865583613512175_54,15
OGLE-LMC-T2CEP-1225:25:48.19−68:29:11.4BL Her18.24119.0281.538 6692167.450 875583536538197_54,14
OGLE-LMC-T2CEP-1715:39:40.96−69:58:01.3BL Her17.82418.5121.554 749726.828 055583580123796_65,14
OGLE-LMC-T2CEP-0685:14:27.05−68:58:02.0BL Her17.67118.2641.609 301456.512 945583549689046_44,14
OGLE-LMC-T2CEP-1245:26:55.80−68:51:53.9BL Her17.88918.6141.734 8672167.638 185583560405306_57,9
OGLE-LMC-T2CEP-0084:51:11.51−69:57:27.0BL Her17.84218.5851.746 0992165.203 695583586567585_34,11(c); (d); (f)
OGLE-LMC-T2CEP-1425:30:34.92−68:06:15.2BL Her17.58018.4581.760 7532167.011 205583534505427_54,13(a); (b); (g)
OGLE-LMC-T2CEP-0845:17:07.50−69:27:34.1BL Her17.51217.8411.770 840456.088 005583553480316_41,8(a); (b); (g)
OGLE-LMC-T2CEP-1415:30:23.32−71:39:00.6BL Her17.97518.7571.822 9542166.564 375583677672914_66,14
OGLE-LMC-T2CEP-1405:30:22.71−69:15:38.6BL Her17.76018.5081.841 1442166.657 005583563117596_57,9
OGLE-LMC-T2CEP-1445:31:19.82−68:51:54.9BL Her17.75018.5451.937 4502166.593 875583560354256_510,20(a); (b); (d); (f)
OGLE-LMC-T2CEP-1305:29:04.24−70:41:37.9BL Her17.52718.1241.944 6942167.584 695583616580785_54,15
OGLE-LMC-T2CEP-0885:18:33.57−70:50:19.2BL Her17.21217.3531.950 7492161.242 955583617792175_54,15(c); (d); (e)
OGLE-LMC-T2CEP-1165:23:55.90−69:25:30.1BL Her17.82518.6581.966 679445.612 785583564647086_57,9
OGLE-LMC-T2CEP-1215:25:42.79−70:20:46.1BL Her17.71318.4302.061 3652166.374 795583614026535_54,15
OGLE-LMC-T2CEP-1665:38:29.09−69:45:06.3BL Her16.92717.6962.110 5992186.166 945583578462076_65,14(h)
OGLE-LMC-T2CEP-0645:13:55.87−68:37:52.1BL Her17.51418.1512.127 8912167.008 435583547451986_44,14
OGLE-LMC-T2CEP-1675:39:02.56−69:37:38.5BL Her17.78118.5972.311 8242187.148 395583577563886_65,14
OGLE-LMC-T2CEP-0925:19:23.63−70:02:56.8BL Her17.40118.1432.616 7682122.719 335583570724916_58,24
OGLE-LMC-T2CEP-1485:31:52.26−69:30:26.4BL Her17.44218.1942.671 734453.911 385583576786156_612,23
OGLE-LMC-T2CEP-1956:02:46.27−72:12:47.0BL Her17.34218.0502.752 9292186.990 005583673542174_85,10
OGLE-LMC-T2CEP-1135:23:06.33−69:32:20.5BL Her17.13717.8113.085 460455.010 035583565686196_57,9(b); (e)
OGLE-LMC-T2CEP-0495:09:21.88−69:36:03.0BL Her17.13017.7033.235 275723.912 435583555011906_44,14(b)
OGLE-LMC-T2CEP-1455:31:46.42−68:58:44.0BL Her16.72617.2093.337 3022167.280 235583573630196_612,23
OGLE-LMC-T2CEP-0855:18:12.87−71:17:15.4BL Her17.14217.8883.405 0952160.554 575583620472855_54,15
OGLE-LMC-T2CEP-0305:03:35.82−68:10:16.2BL Her16.94817.7553.935 3692166.206 735583516635607_34,16(a); (b); (g)
OGLE-LMC-T2CEP-1345:29:28.49−69:48:00.4pW Vir16.26816.8514.075 726454.540 805583568093006_57,9
OGLE-LMC-T2CEP-1735:39:49.93−69:50:52.9W Vir18.41620.1494.147 881724.817 275583579184886_65,14(a); (b)
OGLE-LMC-T2CEP-1205:25:29.55−68:48:11.8W Vir17.00217.8804.559 0532165.735 885583560059966_57,9
OGLE-LMC-T2CEP-0525:09:59.34−69:58:28.7pW Vir16.39516.8614.687 9252164.810 825583557374976_44,14
OGLE-LMC-T2CEP-0985:20:25.00−70:11:08.7pW Vir14.37414.6714.973 737829.464 705583612781435_54,15
OGLE-LMC-T2CEP-0955:20:09.84−68:18:35.3W Vir17.00917.8735.000 1222121.240 285583535716847_54,14(b); (f); (g); (h)
OGLE-LMC-T2CEP-0875:18:21.64−69:40:45.2W Vir16.88717.7705.184 979454.045 235583555105416_411,23
OGLE-LMC-T2CEP-0235:00:13.00−67:42:43.7pW Vir15.51116.1015.234 8012163.878 395583513996607_34,16
OGLE-LMC-T2CEP-0835:16:58.99−69:51:19.3pW Vir16.53117.3205.967 6502119.656 835583556349886_44,14
OGLE-LMC-T2CEP-0625:13:19.12−69:38:57.6W Vir17.33818.4906.046 676453.313 055583555135926_44,14(b); (e)
OGLE-LMC-T2CEP-1335:29:23.48−70:24:28.5W Vir16.67117.4976.281 9552162.687 875583614479935_54,15
OGLE-LMC-T2CEP-1375:30:03.55−69:38:02.8W Vir16.72817.6336.362 350453.960 885583566448916_57,9
OGLE-LMC-T2CEP-1835:44:32.99−69:48:21.8W Vir17.29318.6006.509 6272183.465 565583578931576_65,13
OGLE-LMC-T2CEP-0435:06:00.44−69:55:14.6W Vir16.85117.7746.559 427462.418 325583557272586_44,14(b); (f); (e); (g); (h)
OGLE-LMC-T2CEP-1595:36:42.13−69:31:11.7W Vir16.80517.7696.625 5702182.537 725583576842536_65,14
OGLE-LMC-T2CEP-1175:24:41.50−71:06:44.6W Vir16.64017.5396.629 3492165.529 375583619340915_54,15
OGLE-LMC-T2CEP-1065:22:02.03−69:27:25.3W Vir16.61217.4936.706 736455.584 835583564983526_57,9
OGLE-LMC-T2CEP-0785:16:29.09−69:24:09.0pW Vir16.30817.2066.716 294455.317 685583553019646_44,14
OGLE-LMC-T2CEP-0635:13:43.86−69:50:41.1W Vir16.66217.5536.924 5802165.500 325583556429076_44,14
OGLE-LMC-T2CEP-1105:22:19.48−68:53:50.0W Vir16.76317.7057.078 4682151.910 515583560711796_57,9
OGLE-LMC-T2CEP-1815:43:37.42−70:38:04.9pW Vir16.19316.9727.212 532724.380 265583603736165_74,8
OGLE-LMC-T2CEP-0475:07:46.53−69:37:00.3W Vir16.61617.5367.286 212723.500 425583555241746_44,14
OGLE-LMC-T2CEP-0565:11:19.35−69:34:32.3W Vir16.67717.6547.289 638452.879 685583554693546_44,14
OGLE-LMC-T2CEP-1005:21:14.64−70:23:15.4W Vir16.64217.4077.431 095825.702 185583614484065_54,15
OGLE-LMC-T2CEP-1115:22:22.30−70:52:46.8W Vir16.54217.4407.495 684829.557 735583617945955_54,15
OGLE-LMC-T2CEP-1705:39:38.12−68:48:24.9W Vir16.703−99.9907.682 9062181.190 875583572681166_65,14(i)
OGLE-LMC-T2CEP-1515:34:35.73−69:59:14.9W Vir16.47917.3847.887 246455.117 565583580350156_65,14
OGLE-LMC-T2CEP-1795:43:04.02−70:01:33.6W Vir16.74417.8058.050 0652185.448 135583580640656_64,14
OGLE-LMC-T2CEP-1825:43:46.89−70:42:36.5W Vir16.31217.2658.226 4192188.390 825583604305535_74,8
OGLE-LMC-T2CEP-0945:19:53.20−69:53:09.9W Vir16.58817.5298.468 4902120.738 415583569235556_57,9
OGLE-LMC-T2CEP-0194:58:49.42−68:04:27.8pW Vir15.98916.8538.674 8632162.749 385583516446777_34,16
OGLE-LMC-T2CEP-0395:05:11.31−67:12:45.3W Vir16.32217.1928.715 8372166.319 775583510839137_34,16
OGLE-LMC-T2CEP-0285:03:00.85−70:07:33.7pW Vir15.54316.0458.784 8072168.948 005583586687715_34,9
OGLE-LMC-T2CEP-0745:15:48.75−68:48:48.1W Vir16.07016.8928.988 3442123.389 755583548518396_44,14
OGLE-LMC-T2CEP-1525:34:37.58−70:01:08.5W Vir16.45317.3239.314 921453.026 635583580536326_65,14
OGLE-LMC-T2CEP-0214:59:34.97−71:15:31.2pW Vir15.88416.5809.759 5022161.102 775583594206325_34,11
OGLE-LMC-T2CEP-1325:29:08.23−69:56:04.3pW Vir15.81816.54810.017 829448.218 175583569399816_57,9
OGLE-LMC-T2CEP-1465:31:48.01−68:49:12.1W Vir16.39217.34710.079 5932161.817 035583572772336_612,23
OGLE-LMC-T2CEP-0975:20:20.58−69:12:20.9W Vir16.17717.06410.510 167446.108 165583562944426_57,9
OGLE-LMC-T2CEP-0224:59:58.56−70:34:27.8W Vir16.27117.17910.716 7802157.787 145583590203695_34,11
OGLE-LMC-T2CEP-2015:15:12.67−69:13:08.0pW Vir14.61115.15211.007 243456.113 015583551594876_44,14
OGLE-LMC-T2CEP-1015:21:18.87−69:11:47.3W Vir16.03516.83811.418 560444.882 815583562836726_57,9
OGLE-LMC-T2CEP-0134:55:24.41−69:55:43.4W Vir16.18417.11911.544 6112157.451 855583585874185_34,11
OGLE-LMC-T2CEP-1785:42:19.01−70:24:08.1W Vir16.32617.40612.212 367726.431 605583601984485_74,8
OGLE-LMC-T2CEP-1275:27:59.80−69:23:27.5W Vir16.12017.09212.669 118454.171 115583564206966_57,9
OGLE-LMC-T2CEP-1185:25:15.05−68:09:11.7W Vir16.10317.03712.698 5802163.344 775583534775767_54,14
OGLE-LMC-T2CEP-1035:21:35.27−70:13:25.7W Vir16.03916.99512.908 278824.386 165583613099705_54,15
OGLE-LMC-T2CEP-0445:06:28.86−69:43:58.8W Vir16.09917.10813.270 100464.577 265583556114436_44,14
OGLE-LMC-T2CEP-0265:02:11.56−68:20:16.0W Vir16.09117.02613.577 8692156.872 525583517866147_34,16
OGLE-LMC-T2CEP-0965:20:10.42−68:48:39.2W Vir15.91816.83213.925 7222129.223 745583560250756_57,9
OGLE-LMC-T2CEP-1575:36:02.60−69:27:16.1W Vir16.04517.05014.334 6472181.193 125583576397016_65,14
OGLE-LMC-T2CEP-0174:56:16.02−68:16:16.4W Vir15.98616.96814.454 7542157.707 445583517915987_34,16
OGLE-LMC-T2CEP-1435:31:09.75−69:15:48.9W Vir15.80616.70114.570 1852166.573 165583563130346_512,23
OGLE-LMC-T2CEP-0465:07:38.94−68:20:05.9W Vir15.54716.41514.743 7962162.697 055583517409407_34,16(b); (c); (d); (f)
OGLE-LMC-T2CEP-1395:30:22.56−69:09:12.1W Vir15.96817.00314.780 4102156.199 005583562357086_57,9
OGLE-LMC-T2CEP-1775:40:36.54−69:13:04.3W Vir16.13217.24015.035 9032178.318 375583574922076_65,14
OGLE-LMC-T2CEP-0995:20:44.48−69:01:48.4W Vir15.93216.99915.486 7882111.721 125583561671636_57,9
OGLE-LMC-T2CEP-0865:18:17.80−69:43:27.7W Vir15.62916.48615.845 500452.844 785583555445756_411,23
OGLE-LMC-T2CEP-1265:27:53.42−70:51:30.9W Vir16.21017.43616.326 7782167.506 615583617700865_54,15
OGLE-LMC-T2CEP-0575:11:21.13−68:40:13.3W Vir15.74916.70716.632 0412159.167 415583547816736_44,14
OGLE-LMC-T2CEP-0935:19:26.45−69:51:51.0W Vir15.13015.86117.593 049446.066 335583569041426_57,9(j)
OGLE-LMC-T2CEP-1285:28:43.81−70:14:02.3W Vir15.51716.46018.492 694453.208 285583613001815_54,15
OGLE-LMC-T2CEP-0585:11:33.52−68:35:53.7RV Tau15.51116.59421.482 9512167.453 985583547374266_44,14
OGLE-LMC-T2CEP-1045:21:49.10−70:04:34.3RV Tau14.93715.83024.879 948447.757 455583611704505_511,24
OGLE-LMC-T2CEP-1155:23:43.53−69:32:06.8RV Tau15.59316.65124.966 9132145.848 895583565661556_57,9
OGLE-LMC-T2CEP-1925:53:55.69−70:17:11.4RV Tau15.23316.14826.194 0012181.449 825583601500985_74,8
OGLE-LMC-T2CEP-1355:29:38.50−69:15:12.2RV Tau15.19416.16226.522 3642144.300 375583563085406_57,9
OGLE-LMC-T2CEP-1085:22:11.27−68:11:31.3RV Tau14.74615.47730.010 8432113.813 365583535049107_54,14(k)
OGLE-LMC-T2CEP-1625:37:44.95−69:54:16.5RV Tau15.11216.20030.394 148706.209 905583579616496_65,14
OGLE-LMC-T2CEP-1805:43:12.87−68:33:57.1RV Tau14.50215.30330.996 3152178.207 915583528773747_74,8
OGLE-LMC-T2CEP-1195:25:19.48−70:54:10.0RV Tau14.39115.22533.825 0942158.593 495583618035545_54,15
OGLE-LMC-T2CEP-0505:09:26.15−68:50:05.0RV Tau14.96415.66134.748 344713.647 555583549032696_44,14
OGLE-LMC-T2CEP-2005:13:56.43−69:31:58.3RV Tau15.09216.12434.916 555423.706 705583554233196_44,14(k)
OGLE-LMC-T2CEP-0655:14:00.75−68:57:56.8RV Tau14.69915.61135.054 940455.175 145583549706926_44,14(k)
OGLE-LMC-T2CEP-0915:18:45.48−69:03:21.6RV Tau14.20314.89935.749 346425.386 225583550156026_411,23
OGLE-LMC-T2CEP-2035:22:33.79−69:38:08.5RV Tau15.39516.72337.126 746448.749 615583566654856_57,9
OGLE-LMC-T2CEP-2025:21:49.09−70:46:01.4RV Tau15.16716.35938.135 567812.559 235583617226145_54,15
OGLE-LMC-T2CEP-1125:22:58.36−69:26:20.9RV Tau14.06514.74939.397 704421.634 295583564786746_57,9
OGLE-LMC-T2CEP-0515:09:41.93−68:51:25.0RV Tau14.56915.44040.606 400720.056 755583549172786_44,14(k)
OGLE-LMC-T2CEP-0805:16:47.43−69:44:15.1RV Tau14.34115.17540.916 413436.421 115583555603796_44,14
OGLE-LMC-T2CEP-1495:32:54.46−69:35:13.2RV Tau14.15114.86842.480 6132149.996 735583577302696_65,14
OGLE-LMC-T2CEP-0325:03:56.31−67:27:24.6RV Tau14.01114.99244.561 1952152.876 235583512264987_34,16
OGLE-LMC-T2CEP-1475:31:51.00−69:11:46.3RV Tau13.67814.39146.795 8422135.147 585583574811876_69,23
OGLE-LMC-T2CEP-1745:40:00.50−69:42:14.7RV Tau13.69314.45746.818 9562166.799 275583578148836_65,14
OGLE-LMC-T2CEP-0675:14:18.11−69:12:35.0RV Tau13.82514.62748.231 705442.942 735583551603136_44,14
OGLE-LMC-T2CEP-0755:16:16.06−69:43:36.9RV Tau14.56815.72850.186 569430.990 795583555543096_44,14
OGLE-LMC-T2CEP-0144:55:35.40−69:54:04.2RV Tau14.31215.10361.875 7132161.688 725583585644675_34,11(k)
OGLE-LMC-T2CEP-1295:28:54.60−69:52:41.1RV Tau14.09614.81362.508 947397.727 805583568857946_57,9
OGLE-LMC-T2CEP-0455:06:34.06−69:30:03.7RV Tau13.72914.78763.386 3392148.644 835583554471146_44,14

(a) Large separation (> 0.5 arcsec) between VMC and OGLE III star centroids likely due to crowding; (b) blended object; (c) faint object; (d) poor light curve;

(e) very low amplitude in the optical; (f) source lies within a strip of the tile that has half the exposure of most of the tile (see Cross et al. 2012);

(g) poorly sampled or heavily dispersed light curve (due to e.g. blending, saturation); (h) source image comes partly from detector 16

(on the top half of detector 16, the quantum e�fficiency varies on short time-scales making flat-fields inaccurate; Cross et al. 2012);

(i) missing OGLE V magnitude; (j) light curve showing pulsation plus eclipse according to OGLE III; (k) correction for saturation not effective.

Table 2.

Cross-identification and main characteristics of the T2CEPs in the 13 ‘tiles’ analysed in this paper. The columns report (1) OGLE identification; (2) right ascension (OGLE); (3) declination (OGLE); (4) variability class; (5) intensity-averaged I magnitude (OGLE); (6) intensity-averaged V magnitude (OGLE); (7) period (OGLE); (8) epoch of maximum light −2450 000 d (OGLE); (9) VMC identification as in the internal VSA release VMC v1.2/v1.3(2013 August 5); (10) VMC tile; (11) number of J and Ks epochs, respectively; (12) notes on individual stars.

IDRADec.TypeIVPeriodEpochVMC-IDTileNEpochsNotes
J2000J2000(mag)(mag)(d)(d)J,Ks
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
OGLE-LMC-T2CEP-1235:26:19.26−70:15:34.7BL Her18.23318.7231.002 626454.802 335583613252735_54,15(a); (b)
OGLE-LMC-T2CEP-0695:14:56.77−69:40:22.4BL Her18.37218.9191.021 254457.218 155583555222736_44,14(a); (b); (c)
OGLE-LMC-T2CEP-1145:23:29.75−68:19:07.2BL Her18.06819.0201.091 0892167.449 395583535672287_54,14(b)
OGLE-LMC-T2CEP-0204:59:06.12−67:45:24.6BL Her18.03618.4691.108 1262166.108 545583514370657_34,16(a); (b)
OGLE-LMC-T2CEP-0715:15:08.63−68:54:53.5BL Her17.87218.3821.152 164457.433 795583549265126_44,14
OGLE-LMC-T2CEP-0895:18:35.72−69:45:45.7BL Her18.03218.4921.167 298455.651 665583555690686_411,23
OGLE-LMC-T2CEP-0615:12:30.42−69:07:16.2BL Her18.01818.5881.181 512457.305 015583550981306_44,14
OGLE-LMC-T2CEP-1075:22:05.79−69:40:24.5BL Her17.68418.4821.209 145455.573 775583567041396_57,9(d); (e)
OGLE-LMC-T2CEP-0775:16:21.44−69:36:59.2BL Her17.76218.0391.213 802456.996 035583554729306_44,14
OGLE-LMC-T2CEP-1655:38:15.29−69:28:57.1BL Her18.76119.7231.240 8332187.683 395583576598366_65,14
OGLE-LMC-T2CEP-1025:21:19.67−69:56:56.2BL Her17.75818.2311.266 018455.072 855583569826256_57,9(d); (e)
OGLE-LMC-T2CEP-1945:57:12.03−72:17:13.3BL Her17.87418.4471.314 4672194.110 085583673671744_85,10
OGLE-LMC-T2CEP-1365:29:48.11−69:35:32.1BL Her17.82318.0951.323 038454.373 195583566024716_57,9(b)
OGLE-LMC-T2CEP-1385:30:10.87−68:49:17.1BL Her18.05918.8271.393 5912167.524 915583560099096_57,9(b); (d)
OGLE-LMC-T2CEP-1095:22:12.83−69:41:50.6BL Her19.55921.2121.414 553454.695 805583567270026_57,9(c); (d)
OGLE-LMC-T2CEP-1055:21:58.32−70:16:35.1BL Her17.64518.2061.489 298830.773 865583613512175_54,15
OGLE-LMC-T2CEP-1225:25:48.19−68:29:11.4BL Her18.24119.0281.538 6692167.450 875583536538197_54,14
OGLE-LMC-T2CEP-1715:39:40.96−69:58:01.3BL Her17.82418.5121.554 749726.828 055583580123796_65,14
OGLE-LMC-T2CEP-0685:14:27.05−68:58:02.0BL Her17.67118.2641.609 301456.512 945583549689046_44,14
OGLE-LMC-T2CEP-1245:26:55.80−68:51:53.9BL Her17.88918.6141.734 8672167.638 185583560405306_57,9
OGLE-LMC-T2CEP-0084:51:11.51−69:57:27.0BL Her17.84218.5851.746 0992165.203 695583586567585_34,11(c); (d); (f)
OGLE-LMC-T2CEP-1425:30:34.92−68:06:15.2BL Her17.58018.4581.760 7532167.011 205583534505427_54,13(a); (b); (g)
OGLE-LMC-T2CEP-0845:17:07.50−69:27:34.1BL Her17.51217.8411.770 840456.088 005583553480316_41,8(a); (b); (g)
OGLE-LMC-T2CEP-1415:30:23.32−71:39:00.6BL Her17.97518.7571.822 9542166.564 375583677672914_66,14
OGLE-LMC-T2CEP-1405:30:22.71−69:15:38.6BL Her17.76018.5081.841 1442166.657 005583563117596_57,9
OGLE-LMC-T2CEP-1445:31:19.82−68:51:54.9BL Her17.75018.5451.937 4502166.593 875583560354256_510,20(a); (b); (d); (f)
OGLE-LMC-T2CEP-1305:29:04.24−70:41:37.9BL Her17.52718.1241.944 6942167.584 695583616580785_54,15
OGLE-LMC-T2CEP-0885:18:33.57−70:50:19.2BL Her17.21217.3531.950 7492161.242 955583617792175_54,15(c); (d); (e)
OGLE-LMC-T2CEP-1165:23:55.90−69:25:30.1BL Her17.82518.6581.966 679445.612 785583564647086_57,9
OGLE-LMC-T2CEP-1215:25:42.79−70:20:46.1BL Her17.71318.4302.061 3652166.374 795583614026535_54,15
OGLE-LMC-T2CEP-1665:38:29.09−69:45:06.3BL Her16.92717.6962.110 5992186.166 945583578462076_65,14(h)
OGLE-LMC-T2CEP-0645:13:55.87−68:37:52.1BL Her17.51418.1512.127 8912167.008 435583547451986_44,14
OGLE-LMC-T2CEP-1675:39:02.56−69:37:38.5BL Her17.78118.5972.311 8242187.148 395583577563886_65,14
OGLE-LMC-T2CEP-0925:19:23.63−70:02:56.8BL Her17.40118.1432.616 7682122.719 335583570724916_58,24
OGLE-LMC-T2CEP-1485:31:52.26−69:30:26.4BL Her17.44218.1942.671 734453.911 385583576786156_612,23
OGLE-LMC-T2CEP-1956:02:46.27−72:12:47.0BL Her17.34218.0502.752 9292186.990 005583673542174_85,10
OGLE-LMC-T2CEP-1135:23:06.33−69:32:20.5BL Her17.13717.8113.085 460455.010 035583565686196_57,9(b); (e)
OGLE-LMC-T2CEP-0495:09:21.88−69:36:03.0BL Her17.13017.7033.235 275723.912 435583555011906_44,14(b)
OGLE-LMC-T2CEP-1455:31:46.42−68:58:44.0BL Her16.72617.2093.337 3022167.280 235583573630196_612,23
OGLE-LMC-T2CEP-0855:18:12.87−71:17:15.4BL Her17.14217.8883.405 0952160.554 575583620472855_54,15
OGLE-LMC-T2CEP-0305:03:35.82−68:10:16.2BL Her16.94817.7553.935 3692166.206 735583516635607_34,16(a); (b); (g)
OGLE-LMC-T2CEP-1345:29:28.49−69:48:00.4pW Vir16.26816.8514.075 726454.540 805583568093006_57,9
OGLE-LMC-T2CEP-1735:39:49.93−69:50:52.9W Vir18.41620.1494.147 881724.817 275583579184886_65,14(a); (b)
OGLE-LMC-T2CEP-1205:25:29.55−68:48:11.8W Vir17.00217.8804.559 0532165.735 885583560059966_57,9
OGLE-LMC-T2CEP-0525:09:59.34−69:58:28.7pW Vir16.39516.8614.687 9252164.810 825583557374976_44,14
OGLE-LMC-T2CEP-0985:20:25.00−70:11:08.7pW Vir14.37414.6714.973 737829.464 705583612781435_54,15
OGLE-LMC-T2CEP-0955:20:09.84−68:18:35.3W Vir17.00917.8735.000 1222121.240 285583535716847_54,14(b); (f); (g); (h)
OGLE-LMC-T2CEP-0875:18:21.64−69:40:45.2W Vir16.88717.7705.184 979454.045 235583555105416_411,23
OGLE-LMC-T2CEP-0235:00:13.00−67:42:43.7pW Vir15.51116.1015.234 8012163.878 395583513996607_34,16
OGLE-LMC-T2CEP-0835:16:58.99−69:51:19.3pW Vir16.53117.3205.967 6502119.656 835583556349886_44,14
OGLE-LMC-T2CEP-0625:13:19.12−69:38:57.6W Vir17.33818.4906.046 676453.313 055583555135926_44,14(b); (e)
OGLE-LMC-T2CEP-1335:29:23.48−70:24:28.5W Vir16.67117.4976.281 9552162.687 875583614479935_54,15
OGLE-LMC-T2CEP-1375:30:03.55−69:38:02.8W Vir16.72817.6336.362 350453.960 885583566448916_57,9
OGLE-LMC-T2CEP-1835:44:32.99−69:48:21.8W Vir17.29318.6006.509 6272183.465 565583578931576_65,13
OGLE-LMC-T2CEP-0435:06:00.44−69:55:14.6W Vir16.85117.7746.559 427462.418 325583557272586_44,14(b); (f); (e); (g); (h)
OGLE-LMC-T2CEP-1595:36:42.13−69:31:11.7W Vir16.80517.7696.625 5702182.537 725583576842536_65,14
OGLE-LMC-T2CEP-1175:24:41.50−71:06:44.6W Vir16.64017.5396.629 3492165.529 375583619340915_54,15
OGLE-LMC-T2CEP-1065:22:02.03−69:27:25.3W Vir16.61217.4936.706 736455.584 835583564983526_57,9
OGLE-LMC-T2CEP-0785:16:29.09−69:24:09.0pW Vir16.30817.2066.716 294455.317 685583553019646_44,14
OGLE-LMC-T2CEP-0635:13:43.86−69:50:41.1W Vir16.66217.5536.924 5802165.500 325583556429076_44,14
OGLE-LMC-T2CEP-1105:22:19.48−68:53:50.0W Vir16.76317.7057.078 4682151.910 515583560711796_57,9
OGLE-LMC-T2CEP-1815:43:37.42−70:38:04.9pW Vir16.19316.9727.212 532724.380 265583603736165_74,8
OGLE-LMC-T2CEP-0475:07:46.53−69:37:00.3W Vir16.61617.5367.286 212723.500 425583555241746_44,14
OGLE-LMC-T2CEP-0565:11:19.35−69:34:32.3W Vir16.67717.6547.289 638452.879 685583554693546_44,14
OGLE-LMC-T2CEP-1005:21:14.64−70:23:15.4W Vir16.64217.4077.431 095825.702 185583614484065_54,15
OGLE-LMC-T2CEP-1115:22:22.30−70:52:46.8W Vir16.54217.4407.495 684829.557 735583617945955_54,15
OGLE-LMC-T2CEP-1705:39:38.12−68:48:24.9W Vir16.703−99.9907.682 9062181.190 875583572681166_65,14(i)
OGLE-LMC-T2CEP-1515:34:35.73−69:59:14.9W Vir16.47917.3847.887 246455.117 565583580350156_65,14
OGLE-LMC-T2CEP-1795:43:04.02−70:01:33.6W Vir16.74417.8058.050 0652185.448 135583580640656_64,14
OGLE-LMC-T2CEP-1825:43:46.89−70:42:36.5W Vir16.31217.2658.226 4192188.390 825583604305535_74,8
OGLE-LMC-T2CEP-0945:19:53.20−69:53:09.9W Vir16.58817.5298.468 4902120.738 415583569235556_57,9
OGLE-LMC-T2CEP-0194:58:49.42−68:04:27.8pW Vir15.98916.8538.674 8632162.749 385583516446777_34,16
OGLE-LMC-T2CEP-0395:05:11.31−67:12:45.3W Vir16.32217.1928.715 8372166.319 775583510839137_34,16
OGLE-LMC-T2CEP-0285:03:00.85−70:07:33.7pW Vir15.54316.0458.784 8072168.948 005583586687715_34,9
OGLE-LMC-T2CEP-0745:15:48.75−68:48:48.1W Vir16.07016.8928.988 3442123.389 755583548518396_44,14
OGLE-LMC-T2CEP-1525:34:37.58−70:01:08.5W Vir16.45317.3239.314 921453.026 635583580536326_65,14
OGLE-LMC-T2CEP-0214:59:34.97−71:15:31.2pW Vir15.88416.5809.759 5022161.102 775583594206325_34,11
OGLE-LMC-T2CEP-1325:29:08.23−69:56:04.3pW Vir15.81816.54810.017 829448.218 175583569399816_57,9
OGLE-LMC-T2CEP-1465:31:48.01−68:49:12.1W Vir16.39217.34710.079 5932161.817 035583572772336_612,23
OGLE-LMC-T2CEP-0975:20:20.58−69:12:20.9W Vir16.17717.06410.510 167446.108 165583562944426_57,9
OGLE-LMC-T2CEP-0224:59:58.56−70:34:27.8W Vir16.27117.17910.716 7802157.787 145583590203695_34,11
OGLE-LMC-T2CEP-2015:15:12.67−69:13:08.0pW Vir14.61115.15211.007 243456.113 015583551594876_44,14
OGLE-LMC-T2CEP-1015:21:18.87−69:11:47.3W Vir16.03516.83811.418 560444.882 815583562836726_57,9
OGLE-LMC-T2CEP-0134:55:24.41−69:55:43.4W Vir16.18417.11911.544 6112157.451 855583585874185_34,11
OGLE-LMC-T2CEP-1785:42:19.01−70:24:08.1W Vir16.32617.40612.212 367726.431 605583601984485_74,8
OGLE-LMC-T2CEP-1275:27:59.80−69:23:27.5W Vir16.12017.09212.669 118454.171 115583564206966_57,9
OGLE-LMC-T2CEP-1185:25:15.05−68:09:11.7W Vir16.10317.03712.698 5802163.344 775583534775767_54,14
OGLE-LMC-T2CEP-1035:21:35.27−70:13:25.7W Vir16.03916.99512.908 278824.386 165583613099705_54,15
OGLE-LMC-T2CEP-0445:06:28.86−69:43:58.8W Vir16.09917.10813.270 100464.577 265583556114436_44,14
OGLE-LMC-T2CEP-0265:02:11.56−68:20:16.0W Vir16.09117.02613.577 8692156.872 525583517866147_34,16
OGLE-LMC-T2CEP-0965:20:10.42−68:48:39.2W Vir15.91816.83213.925 7222129.223 745583560250756_57,9
OGLE-LMC-T2CEP-1575:36:02.60−69:27:16.1W Vir16.04517.05014.334 6472181.193 125583576397016_65,14
OGLE-LMC-T2CEP-0174:56:16.02−68:16:16.4W Vir15.98616.96814.454 7542157.707 445583517915987_34,16
OGLE-LMC-T2CEP-1435:31:09.75−69:15:48.9W Vir15.80616.70114.570 1852166.573 165583563130346_512,23
OGLE-LMC-T2CEP-0465:07:38.94−68:20:05.9W Vir15.54716.41514.743 7962162.697 055583517409407_34,16(b); (c); (d); (f)
OGLE-LMC-T2CEP-1395:30:22.56−69:09:12.1W Vir15.96817.00314.780 4102156.199 005583562357086_57,9
OGLE-LMC-T2CEP-1775:40:36.54−69:13:04.3W Vir16.13217.24015.035 9032178.318 375583574922076_65,14
OGLE-LMC-T2CEP-0995:20:44.48−69:01:48.4W Vir15.93216.99915.486 7882111.721 125583561671636_57,9
OGLE-LMC-T2CEP-0865:18:17.80−69:43:27.7W Vir15.62916.48615.845 500452.844 785583555445756_411,23
OGLE-LMC-T2CEP-1265:27:53.42−70:51:30.9W Vir16.21017.43616.326 7782167.506 615583617700865_54,15
OGLE-LMC-T2CEP-0575:11:21.13−68:40:13.3W Vir15.74916.70716.632 0412159.167 415583547816736_44,14
OGLE-LMC-T2CEP-0935:19:26.45−69:51:51.0W Vir15.13015.86117.593 049446.066 335583569041426_57,9(j)
OGLE-LMC-T2CEP-1285:28:43.81−70:14:02.3W Vir15.51716.46018.492 694453.208 285583613001815_54,15
OGLE-LMC-T2CEP-0585:11:33.52−68:35:53.7RV Tau15.51116.59421.482 9512167.453 985583547374266_44,14
OGLE-LMC-T2CEP-1045:21:49.10−70:04:34.3RV Tau14.93715.83024.879 948447.757 455583611704505_511,24
OGLE-LMC-T2CEP-1155:23:43.53−69:32:06.8RV Tau15.59316.65124.966 9132145.848 895583565661556_57,9
OGLE-LMC-T2CEP-1925:53:55.69−70:17:11.4RV Tau15.23316.14826.194 0012181.449 825583601500985_74,8
OGLE-LMC-T2CEP-1355:29:38.50−69:15:12.2RV Tau15.19416.16226.522 3642144.300 375583563085406_57,9
OGLE-LMC-T2CEP-1085:22:11.27−68:11:31.3RV Tau14.74615.47730.010 8432113.813 365583535049107_54,14(k)
OGLE-LMC-T2CEP-1625:37:44.95−69:54:16.5RV Tau15.11216.20030.394 148706.209 905583579616496_65,14
OGLE-LMC-T2CEP-1805:43:12.87−68:33:57.1RV Tau14.50215.30330.996 3152178.207 915583528773747_74,8
OGLE-LMC-T2CEP-1195:25:19.48−70:54:10.0RV Tau14.39115.22533.825 0942158.593 495583618035545_54,15
OGLE-LMC-T2CEP-0505:09:26.15−68:50:05.0RV Tau14.96415.66134.748 344713.647 555583549032696_44,14
OGLE-LMC-T2CEP-2005:13:56.43−69:31:58.3RV Tau15.09216.12434.916 555423.706 705583554233196_44,14(k)
OGLE-LMC-T2CEP-0655:14:00.75−68:57:56.8RV Tau14.69915.61135.054 940455.175 145583549706926_44,14(k)
OGLE-LMC-T2CEP-0915:18:45.48−69:03:21.6RV Tau14.20314.89935.749 346425.386 225583550156026_411,23
OGLE-LMC-T2CEP-2035:22:33.79−69:38:08.5RV Tau15.39516.72337.126 746448.749 615583566654856_57,9
OGLE-LMC-T2CEP-2025:21:49.09−70:46:01.4RV Tau15.16716.35938.135 567812.559 235583617226145_54,15
OGLE-LMC-T2CEP-1125:22:58.36−69:26:20.9RV Tau14.06514.74939.397 704421.634 295583564786746_57,9
OGLE-LMC-T2CEP-0515:09:41.93−68:51:25.0RV Tau14.56915.44040.606 400720.056 755583549172786_44,14(k)
OGLE-LMC-T2CEP-0805:16:47.43−69:44:15.1RV Tau14.34115.17540.916 413436.421 115583555603796_44,14
OGLE-LMC-T2CEP-1495:32:54.46−69:35:13.2RV Tau14.15114.86842.480 6132149.996 735583577302696_65,14
OGLE-LMC-T2CEP-0325:03:56.31−67:27:24.6RV Tau14.01114.99244.561 1952152.876 235583512264987_34,16
OGLE-LMC-T2CEP-1475:31:51.00−69:11:46.3RV Tau13.67814.39146.795 8422135.147 585583574811876_69,23
OGLE-LMC-T2CEP-1745:40:00.50−69:42:14.7RV Tau13.69314.45746.818 9562166.799 275583578148836_65,14
OGLE-LMC-T2CEP-0675:14:18.11−69:12:35.0RV Tau13.82514.62748.231 705442.942 735583551603136_44,14
OGLE-LMC-T2CEP-0755:16:16.06−69:43:36.9RV Tau14.56815.72850.186 569430.990 795583555543096_44,14
OGLE-LMC-T2CEP-0144:55:35.40−69:54:04.2RV Tau14.31215.10361.875 7132161.688 725583585644675_34,11(k)
OGLE-LMC-T2CEP-1295:28:54.60−69:52:41.1RV Tau14.09614.81362.508 947397.727 805583568857946_57,9
OGLE-LMC-T2CEP-0455:06:34.06−69:30:03.7RV Tau13.72914.78763.386 3392148.644 835583554471146_44,14
IDRADec.TypeIVPeriodEpochVMC-IDTileNEpochsNotes
J2000J2000(mag)(mag)(d)(d)J,Ks
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
OGLE-LMC-T2CEP-1235:26:19.26−70:15:34.7BL Her18.23318.7231.002 626454.802 335583613252735_54,15(a); (b)
OGLE-LMC-T2CEP-0695:14:56.77−69:40:22.4BL Her18.37218.9191.021 254457.218 155583555222736_44,14(a); (b); (c)
OGLE-LMC-T2CEP-1145:23:29.75−68:19:07.2BL Her18.06819.0201.091 0892167.449 395583535672287_54,14(b)
OGLE-LMC-T2CEP-0204:59:06.12−67:45:24.6BL Her18.03618.4691.108 1262166.108 545583514370657_34,16(a); (b)
OGLE-LMC-T2CEP-0715:15:08.63−68:54:53.5BL Her17.87218.3821.152 164457.433 795583549265126_44,14
OGLE-LMC-T2CEP-0895:18:35.72−69:45:45.7BL Her18.03218.4921.167 298455.651 665583555690686_411,23
OGLE-LMC-T2CEP-0615:12:30.42−69:07:16.2BL Her18.01818.5881.181 512457.305 015583550981306_44,14
OGLE-LMC-T2CEP-1075:22:05.79−69:40:24.5BL Her17.68418.4821.209 145455.573 775583567041396_57,9(d); (e)
OGLE-LMC-T2CEP-0775:16:21.44−69:36:59.2BL Her17.76218.0391.213 802456.996 035583554729306_44,14
OGLE-LMC-T2CEP-1655:38:15.29−69:28:57.1BL Her18.76119.7231.240 8332187.683 395583576598366_65,14
OGLE-LMC-T2CEP-1025:21:19.67−69:56:56.2BL Her17.75818.2311.266 018455.072 855583569826256_57,9(d); (e)
OGLE-LMC-T2CEP-1945:57:12.03−72:17:13.3BL Her17.87418.4471.314 4672194.110 085583673671744_85,10
OGLE-LMC-T2CEP-1365:29:48.11−69:35:32.1BL Her17.82318.0951.323 038454.373 195583566024716_57,9(b)
OGLE-LMC-T2CEP-1385:30:10.87−68:49:17.1BL Her18.05918.8271.393 5912167.524 915583560099096_57,9(b); (d)
OGLE-LMC-T2CEP-1095:22:12.83−69:41:50.6BL Her19.55921.2121.414 553454.695 805583567270026_57,9(c); (d)
OGLE-LMC-T2CEP-1055:21:58.32−70:16:35.1BL Her17.64518.2061.489 298830.773 865583613512175_54,15
OGLE-LMC-T2CEP-1225:25:48.19−68:29:11.4BL Her18.24119.0281.538 6692167.450 875583536538197_54,14
OGLE-LMC-T2CEP-1715:39:40.96−69:58:01.3BL Her17.82418.5121.554 749726.828 055583580123796_65,14
OGLE-LMC-T2CEP-0685:14:27.05−68:58:02.0BL Her17.67118.2641.609 301456.512 945583549689046_44,14
OGLE-LMC-T2CEP-1245:26:55.80−68:51:53.9BL Her17.88918.6141.734 8672167.638 185583560405306_57,9
OGLE-LMC-T2CEP-0084:51:11.51−69:57:27.0BL Her17.84218.5851.746 0992165.203 695583586567585_34,11(c); (d); (f)
OGLE-LMC-T2CEP-1425:30:34.92−68:06:15.2BL Her17.58018.4581.760 7532167.011 205583534505427_54,13(a); (b); (g)
OGLE-LMC-T2CEP-0845:17:07.50−69:27:34.1BL Her17.51217.8411.770 840456.088 005583553480316_41,8(a); (b); (g)
OGLE-LMC-T2CEP-1415:30:23.32−71:39:00.6BL Her17.97518.7571.822 9542166.564 375583677672914_66,14
OGLE-LMC-T2CEP-1405:30:22.71−69:15:38.6BL Her17.76018.5081.841 1442166.657 005583563117596_57,9
OGLE-LMC-T2CEP-1445:31:19.82−68:51:54.9BL Her17.75018.5451.937 4502166.593 875583560354256_510,20(a); (b); (d); (f)
OGLE-LMC-T2CEP-1305:29:04.24−70:41:37.9BL Her17.52718.1241.944 6942167.584 695583616580785_54,15
OGLE-LMC-T2CEP-0885:18:33.57−70:50:19.2BL Her17.21217.3531.950 7492161.242 955583617792175_54,15(c); (d); (e)
OGLE-LMC-T2CEP-1165:23:55.90−69:25:30.1BL Her17.82518.6581.966 679445.612 785583564647086_57,9
OGLE-LMC-T2CEP-1215:25:42.79−70:20:46.1BL Her17.71318.4302.061 3652166.374 795583614026535_54,15
OGLE-LMC-T2CEP-1665:38:29.09−69:45:06.3BL Her16.92717.6962.110 5992186.166 945583578462076_65,14(h)
OGLE-LMC-T2CEP-0645:13:55.87−68:37:52.1BL Her17.51418.1512.127 8912167.008 435583547451986_44,14
OGLE-LMC-T2CEP-1675:39:02.56−69:37:38.5BL Her17.78118.5972.311 8242187.148 395583577563886_65,14
OGLE-LMC-T2CEP-0925:19:23.63−70:02:56.8BL Her17.40118.1432.616 7682122.719 335583570724916_58,24
OGLE-LMC-T2CEP-1485:31:52.26−69:30:26.4BL Her17.44218.1942.671 734453.911 385583576786156_612,23
OGLE-LMC-T2CEP-1956:02:46.27−72:12:47.0BL Her17.34218.0502.752 9292186.990 005583673542174_85,10
OGLE-LMC-T2CEP-1135:23:06.33−69:32:20.5BL Her17.13717.8113.085 460455.010 035583565686196_57,9(b); (e)
OGLE-LMC-T2CEP-0495:09:21.88−69:36:03.0BL Her17.13017.7033.235 275723.912 435583555011906_44,14(b)
OGLE-LMC-T2CEP-1455:31:46.42−68:58:44.0BL Her16.72617.2093.337 3022167.280 235583573630196_612,23
OGLE-LMC-T2CEP-0855:18:12.87−71:17:15.4BL Her17.14217.8883.405 0952160.554 575583620472855_54,15
OGLE-LMC-T2CEP-0305:03:35.82−68:10:16.2BL Her16.94817.7553.935 3692166.206 735583516635607_34,16(a); (b); (g)
OGLE-LMC-T2CEP-1345:29:28.49−69:48:00.4pW Vir16.26816.8514.075 726454.540 805583568093006_57,9
OGLE-LMC-T2CEP-1735:39:49.93−69:50:52.9W Vir18.41620.1494.147 881724.817 275583579184886_65,14(a); (b)
OGLE-LMC-T2CEP-1205:25:29.55−68:48:11.8W Vir17.00217.8804.559 0532165.735 885583560059966_57,9
OGLE-LMC-T2CEP-0525:09:59.34−69:58:28.7pW Vir16.39516.8614.687 9252164.810 825583557374976_44,14
OGLE-LMC-T2CEP-0985:20:25.00−70:11:08.7pW Vir14.37414.6714.973 737829.464 705583612781435_54,15
OGLE-LMC-T2CEP-0955:20:09.84−68:18:35.3W Vir17.00917.8735.000 1222121.240 285583535716847_54,14(b); (f); (g); (h)
OGLE-LMC-T2CEP-0875:18:21.64−69:40:45.2W Vir16.88717.7705.184 979454.045 235583555105416_411,23
OGLE-LMC-T2CEP-0235:00:13.00−67:42:43.7pW Vir15.51116.1015.234 8012163.878 395583513996607_34,16
OGLE-LMC-T2CEP-0835:16:58.99−69:51:19.3pW Vir16.53117.3205.967 6502119.656 835583556349886_44,14
OGLE-LMC-T2CEP-0625:13:19.12−69:38:57.6W Vir17.33818.4906.046 676453.313 055583555135926_44,14(b); (e)
OGLE-LMC-T2CEP-1335:29:23.48−70:24:28.5W Vir16.67117.4976.281 9552162.687 875583614479935_54,15
OGLE-LMC-T2CEP-1375:30:03.55−69:38:02.8W Vir16.72817.6336.362 350453.960 885583566448916_57,9
OGLE-LMC-T2CEP-1835:44:32.99−69:48:21.8W Vir17.29318.6006.509 6272183.465 565583578931576_65,13
OGLE-LMC-T2CEP-0435:06:00.44−69:55:14.6W Vir16.85117.7746.559 427462.418 325583557272586_44,14(b); (f); (e); (g); (h)
OGLE-LMC-T2CEP-1595:36:42.13−69:31:11.7W Vir16.80517.7696.625 5702182.537 725583576842536_65,14
OGLE-LMC-T2CEP-1175:24:41.50−71:06:44.6W Vir16.64017.5396.629 3492165.529 375583619340915_54,15
OGLE-LMC-T2CEP-1065:22:02.03−69:27:25.3W Vir16.61217.4936.706 736455.584 835583564983526_57,9
OGLE-LMC-T2CEP-0785:16:29.09−69:24:09.0pW Vir16.30817.2066.716 294455.317 685583553019646_44,14
OGLE-LMC-T2CEP-0635:13:43.86−69:50:41.1W Vir16.66217.5536.924 5802165.500 325583556429076_44,14
OGLE-LMC-T2CEP-1105:22:19.48−68:53:50.0W Vir16.76317.7057.078 4682151.910 515583560711796_57,9
OGLE-LMC-T2CEP-1815:43:37.42−70:38:04.9pW Vir16.19316.9727.212 532724.380 265583603736165_74,8
OGLE-LMC-T2CEP-0475:07:46.53−69:37:00.3W Vir16.61617.5367.286 212723.500 425583555241746_44,14
OGLE-LMC-T2CEP-0565:11:19.35−69:34:32.3W Vir16.67717.6547.289 638452.879 685583554693546_44,14
OGLE-LMC-T2CEP-1005:21:14.64−70:23:15.4W Vir16.64217.4077.431 095825.702 185583614484065_54,15
OGLE-LMC-T2CEP-1115:22:22.30−70:52:46.8W Vir16.54217.4407.495 684829.557 735583617945955_54,15
OGLE-LMC-T2CEP-1705:39:38.12−68:48:24.9W Vir16.703−99.9907.682 9062181.190 875583572681166_65,14(i)
OGLE-LMC-T2CEP-1515:34:35.73−69:59:14.9W Vir16.47917.3847.887 246455.117 565583580350156_65,14
OGLE-LMC-T2CEP-1795:43:04.02−70:01:33.6W Vir16.74417.8058.050 0652185.448 135583580640656_64,14
OGLE-LMC-T2CEP-1825:43:46.89−70:42:36.5W Vir16.31217.2658.226 4192188.390 825583604305535_74,8
OGLE-LMC-T2CEP-0945:19:53.20−69:53:09.9W Vir16.58817.5298.468 4902120.738 415583569235556_57,9
OGLE-LMC-T2CEP-0194:58:49.42−68:04:27.8pW Vir15.98916.8538.674 8632162.749 385583516446777_34,16
OGLE-LMC-T2CEP-0395:05:11.31−67:12:45.3W Vir16.32217.1928.715 8372166.319 775583510839137_34,16
OGLE-LMC-T2CEP-0285:03:00.85−70:07:33.7pW Vir15.54316.0458.784 8072168.948 005583586687715_34,9
OGLE-LMC-T2CEP-0745:15:48.75−68:48:48.1W Vir16.07016.8928.988 3442123.389 755583548518396_44,14
OGLE-LMC-T2CEP-1525:34:37.58−70:01:08.5W Vir16.45317.3239.314 921453.026 635583580536326_65,14
OGLE-LMC-T2CEP-0214:59:34.97−71:15:31.2pW Vir15.88416.5809.759 5022161.102 775583594206325_34,11
OGLE-LMC-T2CEP-1325:29:08.23−69:56:04.3pW Vir15.81816.54810.017 829448.218 175583569399816_57,9
OGLE-LMC-T2CEP-1465:31:48.01−68:49:12.1W Vir16.39217.34710.079 5932161.817 035583572772336_612,23
OGLE-LMC-T2CEP-0975:20:20.58−69:12:20.9W Vir16.17717.06410.510 167446.108 165583562944426_57,9
OGLE-LMC-T2CEP-0224:59:58.56−70:34:27.8W Vir16.27117.17910.716 7802157.787 145583590203695_34,11
OGLE-LMC-T2CEP-2015:15:12.67−69:13:08.0pW Vir14.61115.15211.007 243456.113 015583551594876_44,14
OGLE-LMC-T2CEP-1015:21:18.87−69:11:47.3W Vir16.03516.83811.418 560444.882 815583562836726_57,9
OGLE-LMC-T2CEP-0134:55:24.41−69:55:43.4W Vir16.18417.11911.544 6112157.451 855583585874185_34,11
OGLE-LMC-T2CEP-1785:42:19.01−70:24:08.1W Vir16.32617.40612.212 367726.431 605583601984485_74,8
OGLE-LMC-T2CEP-1275:27:59.80−69:23:27.5W Vir16.12017.09212.669 118454.171 115583564206966_57,9
OGLE-LMC-T2CEP-1185:25:15.05−68:09:11.7W Vir16.10317.03712.698 5802163.344 775583534775767_54,14
OGLE-LMC-T2CEP-1035:21:35.27−70:13:25.7W Vir16.03916.99512.908 278824.386 165583613099705_54,15
OGLE-LMC-T2CEP-0445:06:28.86−69:43:58.8W Vir16.09917.10813.270 100464.577 265583556114436_44,14
OGLE-LMC-T2CEP-0265:02:11.56−68:20:16.0W Vir16.09117.02613.577 8692156.872 525583517866147_34,16
OGLE-LMC-T2CEP-0965:20:10.42−68:48:39.2W Vir15.91816.83213.925 7222129.223 745583560250756_57,9
OGLE-LMC-T2CEP-1575:36:02.60−69:27:16.1W Vir16.04517.05014.334 6472181.193 125583576397016_65,14
OGLE-LMC-T2CEP-0174:56:16.02−68:16:16.4W Vir15.98616.96814.454 7542157.707 445583517915987_34,16
OGLE-LMC-T2CEP-1435:31:09.75−69:15:48.9W Vir15.80616.70114.570 1852166.573 165583563130346_512,23
OGLE-LMC-T2CEP-0465:07:38.94−68:20:05.9W Vir15.54716.41514.743 7962162.697 055583517409407_34,16(b); (c); (d); (f)
OGLE-LMC-T2CEP-1395:30:22.56−69:09:12.1W Vir15.96817.00314.780 4102156.199 005583562357086_57,9
OGLE-LMC-T2CEP-1775:40:36.54−69:13:04.3W Vir16.13217.24015.035 9032178.318 375583574922076_65,14
OGLE-LMC-T2CEP-0995:20:44.48−69:01:48.4W Vir15.93216.99915.486 7882111.721 125583561671636_57,9
OGLE-LMC-T2CEP-0865:18:17.80−69:43:27.7W Vir15.62916.48615.845 500452.844 785583555445756_411,23
OGLE-LMC-T2CEP-1265:27:53.42−70:51:30.9W Vir16.21017.43616.326 7782167.506 615583617700865_54,15
OGLE-LMC-T2CEP-0575:11:21.13−68:40:13.3W Vir15.74916.70716.632 0412159.167 415583547816736_44,14
OGLE-LMC-T2CEP-0935:19:26.45−69:51:51.0W Vir15.13015.86117.593 049446.066 335583569041426_57,9(j)
OGLE-LMC-T2CEP-1285:28:43.81−70:14:02.3W Vir15.51716.46018.492 694453.208 285583613001815_54,15
OGLE-LMC-T2CEP-0585:11:33.52−68:35:53.7RV Tau15.51116.59421.482 9512167.453 985583547374266_44,14
OGLE-LMC-T2CEP-1045:21:49.10−70:04:34.3RV Tau14.93715.83024.879 948447.757 455583611704505_511,24
OGLE-LMC-T2CEP-1155:23:43.53−69:32:06.8RV Tau15.59316.65124.966 9132145.848 895583565661556_57,9
OGLE-LMC-T2CEP-1925:53:55.69−70:17:11.4RV Tau15.23316.14826.194 0012181.449 825583601500985_74,8
OGLE-LMC-T2CEP-1355:29:38.50−69:15:12.2RV Tau15.19416.16226.522 3642144.300 375583563085406_57,9
OGLE-LMC-T2CEP-1085:22:11.27−68:11:31.3RV Tau14.74615.47730.010 8432113.813 365583535049107_54,14(k)
OGLE-LMC-T2CEP-1625:37:44.95−69:54:16.5RV Tau15.11216.20030.394 148706.209 905583579616496_65,14
OGLE-LMC-T2CEP-1805:43:12.87−68:33:57.1RV Tau14.50215.30330.996 3152178.207 915583528773747_74,8
OGLE-LMC-T2CEP-1195:25:19.48−70:54:10.0RV Tau14.39115.22533.825 0942158.593 495583618035545_54,15
OGLE-LMC-T2CEP-0505:09:26.15−68:50:05.0RV Tau14.96415.66134.748 344713.647 555583549032696_44,14
OGLE-LMC-T2CEP-2005:13:56.43−69:31:58.3RV Tau15.09216.12434.916 555423.706 705583554233196_44,14(k)
OGLE-LMC-T2CEP-0655:14:00.75−68:57:56.8RV Tau14.69915.61135.054 940455.175 145583549706926_44,14(k)
OGLE-LMC-T2CEP-0915:18:45.48−69:03:21.6RV Tau14.20314.89935.749 346425.386 225583550156026_411,23
OGLE-LMC-T2CEP-2035:22:33.79−69:38:08.5RV Tau15.39516.72337.126 746448.749 615583566654856_57,9
OGLE-LMC-T2CEP-2025:21:49.09−70:46:01.4RV Tau15.16716.35938.135 567812.559 235583617226145_54,15
OGLE-LMC-T2CEP-1125:22:58.36−69:26:20.9RV Tau14.06514.74939.397 704421.634 295583564786746_57,9
OGLE-LMC-T2CEP-0515:09:41.93−68:51:25.0RV Tau14.56915.44040.606 400720.056 755583549172786_44,14(k)
OGLE-LMC-T2CEP-0805:16:47.43−69:44:15.1RV Tau14.34115.17540.916 413436.421 115583555603796_44,14
OGLE-LMC-T2CEP-1495:32:54.46−69:35:13.2RV Tau14.15114.86842.480 6132149.996 735583577302696_65,14
OGLE-LMC-T2CEP-0325:03:56.31−67:27:24.6RV Tau14.01114.99244.561 1952152.876 235583512264987_34,16
OGLE-LMC-T2CEP-1475:31:51.00−69:11:46.3RV Tau13.67814.39146.795 8422135.147 585583574811876_69,23
OGLE-LMC-T2CEP-1745:40:00.50−69:42:14.7RV Tau13.69314.45746.818 9562166.799 275583578148836_65,14
OGLE-LMC-T2CEP-0675:14:18.11−69:12:35.0RV Tau13.82514.62748.231 705442.942 735583551603136_44,14
OGLE-LMC-T2CEP-0755:16:16.06−69:43:36.9RV Tau14.56815.72850.186 569430.990 795583555543096_44,14
OGLE-LMC-T2CEP-0144:55:35.40−69:54:04.2RV Tau14.31215.10361.875 7132161.688 725583585644675_34,11(k)
OGLE-LMC-T2CEP-1295:28:54.60−69:52:41.1RV Tau14.09614.81362.508 947397.727 805583568857946_57,9
OGLE-LMC-T2CEP-0455:06:34.06−69:30:03.7RV Tau13.72914.78763.386 3392148.644 835583554471146_44,14

(a) Large separation (> 0.5 arcsec) between VMC and OGLE III star centroids likely due to crowding; (b) blended object; (c) faint object; (d) poor light curve;

(e) very low amplitude in the optical; (f) source lies within a strip of the tile that has half the exposure of most of the tile (see Cross et al. 2012);

(g) poorly sampled or heavily dispersed light curve (due to e.g. blending, saturation); (h) source image comes partly from detector 16

(on the top half of detector 16, the quantum e�fficiency varies on short time-scales making flat-fields inaccurate; Cross et al. 2012);

(i) missing OGLE V magnitude; (j) light curve showing pulsation plus eclipse according to OGLE III; (k) correction for saturation not effective.

The OGLE III catalogues of T2CEP variables were cross-correlated against the VMC catalogue to obtain the J and Ks light curves for these variables. All the 130 T2CEPs were found to have a counterpart in the VMC catalogue within 2 arcsec from the OGLE III positions. The great majority of the objects showed separation in position with respect to OGLE III less than 0.1 arcsec. However, eight stars (OGLE-LMC-T2CEP-020, 030, 069, 084, 123, 142, 144, 173) present separations significantly larger than average (> 0.5 arcsec). Fig. 2 shows the OGLE III and VMC finding charts of 29 stars with some kind of identification or data problem, within which we included the eight objects quoted above. It can be seen that all the stars lie in crowded regions or are clearly blended by other stars or diffuse objects (e.g. OGLE-LMC-T2CEP-142). We will discuss these objects further in the following sections.

Figure 2.

Sky pictures for 29 problematic stars extracted from the VMC (bottom panels) and the OGLE III (top panels) archives. The target is identified with the last three digits of the OGLE III identification (i.e. without the prefix ‘OGLE-LMC-T2CEP-’).

2.1 T2CEP light curves

The VMC time-series J and Ks photometry for the 130 objects is provided in Table 3, which is published in its entirety in the online version of the paper.

Table 3.

J and Ks time-series photometry for the T2CEPs investigated in this paper. The data below refer to the variable OGLE-LMC-T2CEP-123.

HJD−2400000JσJ
55487.7711116.9630.014
55487.8097616.9590.014
55497.7931716.9890.014
55497.8604816.9500.013
HJD−2400000Ks|$\sigma _{K_\mathrm{s}}$|
55495.8264416.5200.020
55497.7593716.5200.020
55497.8150716.5130.024
55499.8217016.5170.023
55511.7477416.5070.020
55516.7723616.4960.023
55526.7886816.4980.021
55539.8248316.4880.022
55557.7393716.4820.023
55563.7132516.4650.021
55587.6575516.4700.023
55844.7977116.5260.020
55865.8275316.4830.021
55887.7474416.4770.022
55937.6787716.4540.021
HJD−2400000JσJ
55487.7711116.9630.014
55487.8097616.9590.014
55497.7931716.9890.014
55497.8604816.9500.013
HJD−2400000Ks|$\sigma _{K_\mathrm{s}}$|
55495.8264416.5200.020
55497.7593716.5200.020
55497.8150716.5130.024
55499.8217016.5170.023
55511.7477416.5070.020
55516.7723616.4960.023
55526.7886816.4980.021
55539.8248316.4880.022
55557.7393716.4820.023
55563.7132516.4650.021
55587.6575516.4700.023
55844.7977116.5260.020
55865.8275316.4830.021
55887.7474416.4770.022
55937.6787716.4540.021

Table 3 is published in its entirety only in the electronic edition of the journal. A portion is shown here for guidance regarding its form and content.

Table 3.

J and Ks time-series photometry for the T2CEPs investigated in this paper. The data below refer to the variable OGLE-LMC-T2CEP-123.

HJD−2400000JσJ
55487.7711116.9630.014
55487.8097616.9590.014
55497.7931716.9890.014
55497.8604816.9500.013
HJD−2400000Ks|$\sigma _{K_\mathrm{s}}$|
55495.8264416.5200.020
55497.7593716.5200.020
55497.8150716.5130.024
55499.8217016.5170.023
55511.7477416.5070.020
55516.7723616.4960.023
55526.7886816.4980.021
55539.8248316.4880.022
55557.7393716.4820.023
55563.7132516.4650.021
55587.6575516.4700.023
55844.7977116.5260.020
55865.8275316.4830.021
55887.7474416.4770.022
55937.6787716.4540.021
HJD−2400000JσJ
55487.7711116.9630.014
55487.8097616.9590.014
55497.7931716.9890.014
55497.8604816.9500.013
HJD−2400000Ks|$\sigma _{K_\mathrm{s}}$|
55495.8264416.5200.020
55497.7593716.5200.020
55497.8150716.5130.024
55499.8217016.5170.023
55511.7477416.5070.020
55516.7723616.4960.023
55526.7886816.4980.021
55539.8248316.4880.022
55557.7393716.4820.023
55563.7132516.4650.021
55587.6575516.4700.023
55844.7977116.5260.020
55865.8275316.4830.021
55887.7474416.4770.022
55937.6787716.4540.021

Table 3 is published in its entirety only in the electronic edition of the journal. A portion is shown here for guidance regarding its form and content.

Periods and epochs of maximum light available from the OGLE III catalogue were used to fold the J- and Ks-band light curves produced by the VMC observations. Given the larger number of epochs in Ks with respect to J, we discuss first the Ks-band data.

The Ks-band light curves for a sample of 120 T2CEPs with useful light curves are shown in Fig. A1. Apart from a few cases, these light curves are generally well sampled and nicely shaped. Some clearly discrepant data points (open circles in Fig. A1) in the light curves were excluded from the fit but were plotted in the figure for completeness. Note that most of these ‘bad’ data points belong to observations collected during nights that did not strictly meet the VMC observing constraints (see table 2 in Cioni et al. 2011). The final spline fit to the data is shown by a solid line in Fig. A1. Intensity-averaged 〈Ks〉 magnitudes were derived from the light curves using custom software written in c, which performs a spline interpolation to the data with no need of using templates. The numerical model of the light curve is thus obtained and then integrated in intensity to obtain the mean intensity which is eventually transformed to mean magnitude.

10 objects in our sample showed unusable light curves, namely OGLE-LMC-T2CEP-014, 030, 043, 051, 065, 084, 095, 108, 142 and 200. Their light curves are displayed in Fig. A2, whereas their finding charts are shown in Fig. 2. A quick analysis of the finding charts reveals that all these stars have significant problems of crowding/blending. Three of the aforementioned objects (OGLE-LMC-T2CEP-030, 084 and 142) have centroids significantly shifted with respect to OGLE's, thus confirming the presence of strong blending.

As for the J-band data, Fig. A3 shows the light curves for the 34 stars that have sufficiently good data to allow an independent spline fit (solid line in the figure). Figs A4 and A5 show the light curves for the remaining 86 and 10 objects with small number of epochs (∼4–5 on average) and dispersed light curves, respectively. The latter variables show the same problems reported for the Ks band. To estimate the intensity-averaged J magnitude for the 86 stars possessing only few epochs of observation, we decided to use the spline-fit curves in the Ks band as templates.5 To this aim, for each star we performed the following steps: (1) subtracted the average 〈Ks〉 magnitude from the Ks spline-fit curve; (2) adjusted by eye the data obtained in this way to fit the J light curve by (i) adding a ZP, (ii) multiplying the amplitude by a proper factor and (iii) shifting the light curve in phase. The factor needed for point (ii) is the ratio Amp(J)/Amp(Ks). To estimate this number, we used the 34 stars with independent J-band spline fit, obtaining a value of 1.1±0.2. The uncertainty of ∼20 per cent may appear large, but it does not actually represent a problem since its contribution to the error on the intensity-averaged J is of the order of 0.5 per cent. In some favourable cases, the few data points covered both maximum and minimum of the light curve and it was then possible to constrain directly the amplitude ratio. The shift in phase (point iii above) varied from case to case, but was on average close to 0.05–0.06. The final error on the intensity-averaged J magnitude was calculated by summing in quadrature the error on the Ks magnitude, the uncertainty on the J magnitude caused by the error on the amplitude ratio and an additional 1 per cent to take into account the uncertainty on the phase shift. The goodness of this procedure can be appreciated in Fig. 3, where we show in different colours the PL and PW relations (see the next section for a detailed description of these relations) for the stars with intensity-averaged J photometry obtained directly from spline fits (black points) and with the template fits (grey points). The figure clearly shows that the results obtained on the basis of the Ks templates are usable for scientific purposes. The final 〈J〉,〈Ks〉 magnitudes with relative uncertainties, as well as pulsational amplitudes and adopted reddening values (see Section 3), are provided in Table 4.

Figure 3.

From top to bottom: PL in the J band, PW in (J, V − J) and PW in (Ks, J − Ks) for T2CEPs whose intensity-averaged 〈J〉 magnitude was obtained on the basis of direct spline fit (black filled circles) or template fit (grey filled circles). See the text for details.

Table 4.

Results for the 120 T2CEPs with useful NIR light curves analysed in this paper. The columns report (1) OGLE identification; (2) variability class; (3) period (OGLE); (4) intensity-averaged J magnitude; (5) uncertainty on the 〈J〉 (6) intensity-averaged Ks magnitude; (7) uncertainty on the 〈Ks〉; (8) peak-to-peak amplitude in J; (9) peak-to-peak amplitude in Ks; (10) adopted reddening; (11) T = results in J obtained on the basis of the Ks template, S = results in J obtained on the basis of direct spline fitting to the data.

IDVar. classPeriodJσJKs|$\sigma _{\langle K_\mathrm{s} \rangle }$|Amp(J)Amp(Ks)E(V − I)Note
(d)(mag)(mag)(mag)(mag)(mag)(mag)(mag)
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)
OGLE-LMC-T2CEP-123BL Her1.002 626316.9390.02116.4860.0130.050.050.080T
OGLE-LMC-T2CEP-069BL Her1.021 254217.0420.03316.5850.0210.100.100.050T
OGLE-LMC-T2CEP-114BL Her1.091 088617.3290.06916.8310.0190.170.160.130T
OGLE-LMC-T2CEP-020BL Her1.108 125816.7350.04316.3100.0220.090.070.060T
OGLE-LMC-T2CEP-071BL Her1.152 163817.5220.02217.3260.0260.400.380.070T
OGLE-LMC-T2CEP-089BL Her1.167 297717.7150.01817.4790.0430.400.320.040S
OGLE-LMC-T2CEP-061BL Her1.181 512417.5810.03717.4580.0310.380.190.090T
OGLE-LMC-T2CEP-107BL Her1.209 145116.9790.00516.5260.0160.190.130.030S
OGLE-LMC-T2CEP-077BL Her1.213 802317.5210.04517.3170.0250.180.170.020T
OGLE-LMC-T2CEP-165BL Her1.240 833017.8890.04917.3810.0240.340.320.180T
OGLE-LMC-T2CEP-102BL Her1.266 017617.1460.01016.8170.0200.200.130.070S
OGLE-LMC-T2CEP-194BL Her1.314 467517.4060.01717.1340.0180.380.240.080T
OGLE-LMC-T2CEP-136BL Her1.323 038416.4920.01115.9780.0060.310.080.060S
OGLE-LMC-T2CEP-138BL Her1.393 590616.9750.04316.5760.0170.070.070.070T
OGLE-LMC-T2CEP-109BL Her1.414 552818.6100.05617.7900.0380.430.380.030S
OGLE-LMC-T2CEP-105BL Her1.489 297917.1340.01216.9140.0210.410.270.080T
OGLE-LMC-T2CEP-122BL Her1.538 669017.5200.03417.1360.0180.240.230.110T
OGLE-LMC-T2CEP-171BL Her1.554 749217.1750.01716.8750.0170.180.170.170T
OGLE-LMC-T2CEP-068BL Her1.609 300717.2250.02816.9420.0180.270.260.100T
OGLE-LMC-T2CEP-124BL Her1.734 866617.2800.00916.9530.0300.300.300.110S
OGLE-LMC-T2CEP-008BL Her1.746 098917.2570.02317.3890.0280.080.080.100T
OGLE-LMC-T2CEP-141BL Her1.822 953917.3890.02317.0480.0210.360.400.100T
OGLE-LMC-T2CEP-140BL Her1.841 143517.1270.01216.7790.0140.210.270.080S
OGLE-LMC-T2CEP-144BL Her1.937 450216.7260.01716.3020.0110.220.200.120S
OGLE-LMC-T2CEP-130BL Her1.944 693517.0360.01616.7400.0210.360.340.060T
OGLE-LMC-T2CEP-088BL Her1.950 749017.1580.01217.1470.0280.090.090.060T
OGLE-LMC-T2CEP-116BL Her1.966 679317.0860.03816.7460.0070.230.320.060S
OGLE-LMC-T2CEP-121BL Her2.061 365517.2340.03316.8540.0140.450.430.030T
OGLE-LMC-T2CEP-166BL Her2.110 598716.3430.01515.9220.0060.230.220.190T
OGLE-LMC-T2CEP-064BL Her2.127 890617.0430.01916.6980.0250.470.450.070T
OGLE-LMC-T2CEP-167BL Her2.311 823817.0910.04516.6850.0100.500.480.320T
OGLE-LMC-T2CEP-092BL Her2.616 768416.8640.09716.5260.0660.690.660.050T
OGLE-LMC-T2CEP-148BL Her2.671 733816.8530.01116.5160.0150.430.560.060S
OGLE-LMC-T2CEP-195BL Her2.752 929216.8500.02116.4740.0080.550.460.080T
OGLE-LMC-T2CEP-113BL Her3.085 460216.2850.00215.9350.0080.100.060.020S
OGLE-LMC-T2CEP-049BL Her3.235 275116.3590.01515.9260.0100.250.240.070T
OGLE-LMC-T2CEP-145BL Her3.337 301916.2690.00816.0470.0150.110.080.120S
OGLE-LMC-T2CEP-085BL Her3.405 095516.6400.01716.1910.0110.470.450.090T
OGLE-LMC-T2CEP-134pW Vir4.075 725815.7820.00915.5140.0070.310.360.080S
OGLE-LMC-T2CEP-173W Vir4.147 881116.0490.01815.4520.0050.120.110.170T
OGLE-LMC-T2CEP-120W Vir4.559 053016.3540.00715.9510.0090.380.380.130S
OGLE-LMC-T2CEP-052pW Vir4.687 925316.0310.01815.7410.0220.140.130.070T
OGLE-LMC-T2CEP-098pW Vir4.973 737214.0560.01413.8920.0050.150.140.120T
OGLE-LMC-T2CEP-087W Vir5.184 979016.3020.01315.8590.0150.300.310.090S
OGLE-LMC-T2CEP-023pW Vir5.234 800715.0050.04314.7200.0130.360.340.040T
OGLE-LMC-T2CEP-083pW Vir5.967 649615.9360.05415.4620.0110.480.460.100T
OGLE-LMC-T2CEP-062W Vir6.046 676416.0600.01915.4310.0030.050.050.090T
OGLE-LMC-T2CEP-133W Vir6.281 955116.0130.01015.5640.0130.090.090.040T
OGLE-LMC-T2CEP-137W Vir6.362 349916.0440.00415.6300.0100.110.110.110S
OGLE-LMC-T2CEP-183W Vir6.509 627516.3250.01615.7390.0160.150.140.200T
OGLE-LMC-T2CEP-159W Vir6.625 569616.0890.01515.6050.0100.090.090.110T
OGLE-LMC-T2CEP-117W Vir6.629 348716.0070.01215.5790.0050.120.110.080T
OGLE-LMC-T2CEP-106W Vir6.706 736315.9560.05515.4740.0100.160.150.050T
OGLE-LMC-T2CEP-078pW Vir6.716 294315.3490.01614.7640.0110.150.140.090T
OGLE-LMC-T2CEP-063W Vir6.924 580016.0400.02315.5770.0160.140.130.050T
OGLE-LMC-T2CEP-110W Vir7.078 468415.9780.00815.5110.0170.160.150.120S
OGLE-LMC-T2CEP-181pW Vir7.212 532315.5050.01315.1510.0050.070.070.130T
OGLE-LMC-T2CEP-047W Vir7.286 212315.9430.01815.5110.0110.140.130.070T
OGLE-LMC-T2CEP-056W Vir7.289 638215.9650.01715.5220.0040.160.150.110T
OGLE-LMC-T2CEP-100W Vir7.431 095015.9650.01215.6470.0200.290.280.080T
OGLE-LMC-T2CEP-111W Vir7.495 683815.8650.01115.4410.0060.190.180.060T
OGLE-LMC-T2CEP-170W Vir7.682 906215.9260.01815.4230.0040.160.150.180T
OGLE-LMC-T2CEP-151W Vir7.887 245815.8140.01615.3660.0090.140.130.110T
OGLE-LMC-T2CEP-179W Vir8.050 065015.9320.01415.3780.0050.140.130.110T
OGLE-LMC-T2CEP-182W Vir8.226 419415.6280.03515.2180.0070.370.350.130T
OGLE-LMC-T2CEP-094W Vir8.468 489715.6590.04815.1430.0060.100.100.040T
OGLE-LMC-T2CEP-019pW Vir8.674 863415.2630.02414.8800.0150.330.310.110T
OGLE-LMC-T2CEP-039W Vir8.715 837315.6820.01815.2170.0090.190.180.040T
OGLE-LMC-T2CEP-028pW Vir8.784 807315.0830.01614.7910.0060.320.300.050T
OGLE-LMC-T2CEP-074W Vir8.988 343915.4140.01915.0250.0250.220.210.060T
OGLE-LMC-T2CEP-152W Vir9.314 921115.5590.01315.0800.0040.390.370.100T
OGLE-LMC-T2CEP-021pW Vir9.759 502415.3090.04615.0590.0180.160.150.070T
OGLE-LMC-T2CEP-132pW Vir10.017 828715.2270.01514.8040.0050.220.090.080S
OGLE-LMC-T2CEP-146W Vir10.079 592515.5760.02615.1720.0210.370.290.100S
OGLE-LMC-T2CEP-097W Vir10.510 166615.5300.06215.0680.0060.280.270.050T
OGLE-LMC-T2CEP-022W Vir10.716 780015.5980.01115.1260.0150.350.330.030T
OGLE-LMC-T2CEP-201pW Vir11.007 243114.1950.01813.8920.0070.060.060.050T
OGLE-LMC-T2CEP-101W Vir11.418 559615.4270.00915.0090.0070.450.400.080S
OGLE-LMC-T2CEP-013W Vir11.544 611315.4980.01415.0010.0130.220.210.090T
OGLE-LMC-T2CEP-178W Vir12.212 366715.5170.02014.9850.0080.330.310.150T
OGLE-LMC-T2CEP-127W Vir12.669 118515.3720.02214.8510.0110.480.370.070S
OGLE-LMC-T2CEP-118W Vir12.698 580415.4120.03814.9140.0070.720.690.100T
OGLE-LMC-T2CEP-103W Vir12.908 277515.3360.01114.8590.0190.400.380.080T
OGLE-LMC-T2CEP-044W Vir13.270 100415.4550.03014.8350.0130.300.290.090T
OGLE-LMC-T2CEP-026W Vir13.577 868915.2090.08914.8230.0120.390.370.080T
OGLE-LMC-T2CEP-096W Vir13.925 722415.2770.05614.7760.0060.810.750.090S
OGLE-LMC-T2CEP-157W Vir14.334 646615.3040.04514.7820.0430.660.630.100T
OGLE-LMC-T2CEP-017W Vir14.454 754415.3540.05614.7850.0210.810.770.110T
OGLE-LMC-T2CEP-143W Vir14.570 184614.9910.07514.7430.0681.050.720.060S
OGLE-LMC-T2CEP-046W Vir14.743 795614.9210.05814.3600.0210.620.590.060T
OGLE-LMC-T2CEP-139W Vir14.780 410415.2200.01414.7090.0050.500.510.150S
OGLE-LMC-T2CEP-177W Vir15.035 902715.2450.02414.7410.0070.690.660.270T
OGLE-LMC-T2CEP-099W Vir15.486 787715.0940.00314.5640.0050.510.520.100S
OGLE-LMC-T2CEP-086W Vir15.845 500015.0240.01114.5860.0170.790.800.030S
OGLE-LMC-T2CEP-126W Vir16.326 778515.3230.02314.7330.0130.770.730.090T
OGLE-LMC-T2CEP-057W Vir16.632 041515.0520.02114.5660.0130.820.780.060T
OGLE-LMC-T2CEP-093W Vir17.593 049214.5240.02114.1360.0190.610.470.040S
OGLE-LMC-T2CEP-128W Vir18.492 693814.7870.02314.3630.0540.710.680.050T
OGLE-LMC-T2CEP-058RV Tau21.482 950914.7770.01714.2080.0140.750.710.090T
OGLE-LMC-T2CEP-104RV Tau24.879 948014.1310.02013.4020.0430.320.610.090S
OGLE-LMC-T2CEP-115RV Tau24.966 912614.7900.00214.3340.0130.660.630.030S
OGLE-LMC-T2CEP-192RV Tau26.194 001114.5210.03314.0960.0081.091.040.060T
OGLE-LMC-T2CEP-135RV Tau26.522 363814.3500.01613.7990.0151.090.760.070S
OGLE-LMC-T2CEP-162RV Tau30.394 148314.2940.04313.7260.0430.570.410.220T
OGLE-LMC-T2CEP-180RV Tau30.996 314513.7850.06812.9210.0330.420.400.070T
OGLE-LMC-T2CEP-119RV Tau33.825 093813.8320.02112.9510.0640.890.850.080T
OGLE-LMC-T2CEP-050RV Tau34.748 343814.2570.03013.8110.0140.190.180.070T
OGLE-LMC-T2CEP-091RV Tau35.749 345613.6520.04512.6930.0550.620.640.070S
OGLE-LMC-T2CEP-203RV Tau37.126 746314.4160.00713.7390.0040.610.390.040S
OGLE-LMC-T2CEP-202RV Tau38.135 567414.3100.01313.7530.0150.070.070.090T
OGLE-LMC-T2CEP-112RV Tau39.397 703713.5310.02113.1630.0090.270.240.030S
OGLE-LMC-T2CEP-080RV Tau40.916 413113.9570.02713.2530.0470.440.420.040T
OGLE-LMC-T2CEP-149RV Tau42.480 612913.6490.03913.2520.0070.130.120.140T
OGLE-LMC-T2CEP-032RV Tau44.561 194813.2320.03012.2120.0900.360.340.050T
OGLE-LMC-T2CEP-147RV Tau46.795 841913.1450.01712.6580.0130.060.060.090T
OGLE-LMC-T2CEP-174RV Tau46.818 956213.0890.01612.0480.0300.460.440.150T
OGLE-LMC-T2CEP-067RV Tau48.231 705113.1760.02212.2630.0520.200.190.100T
OGLE-LMC-T2CEP-075RV Tau50.186 568613.9000.11013.5020.0330.780.740.070T
OGLE-LMC-T2CEP-129RV Tau62.508 946613.5140.03513.1230.0130.160.140.070S
OGLE-LMC-T2CEP-045RV Tau63.386 339113.0980.02412.6640.0210.160.150.070T
IDVar. classPeriodJσJKs|$\sigma _{\langle K_\mathrm{s} \rangle }$|Amp(J)Amp(Ks)E(V − I)Note
(d)(mag)(mag)(mag)(mag)(mag)(mag)(mag)
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)
OGLE-LMC-T2CEP-123BL Her1.002 626316.9390.02116.4860.0130.050.050.080T
OGLE-LMC-T2CEP-069BL Her1.021 254217.0420.03316.5850.0210.100.100.050T
OGLE-LMC-T2CEP-114BL Her1.091 088617.3290.06916.8310.0190.170.160.130T
OGLE-LMC-T2CEP-020BL Her1.108 125816.7350.04316.3100.0220.090.070.060T
OGLE-LMC-T2CEP-071BL Her1.152 163817.5220.02217.3260.0260.400.380.070T
OGLE-LMC-T2CEP-089BL Her1.167 297717.7150.01817.4790.0430.400.320.040S
OGLE-LMC-T2CEP-061BL Her1.181 512417.5810.03717.4580.0310.380.190.090T
OGLE-LMC-T2CEP-107BL Her1.209 145116.9790.00516.5260.0160.190.130.030S
OGLE-LMC-T2CEP-077BL Her1.213 802317.5210.04517.3170.0250.180.170.020T
OGLE-LMC-T2CEP-165BL Her1.240 833017.8890.04917.3810.0240.340.320.180T
OGLE-LMC-T2CEP-102BL Her1.266 017617.1460.01016.8170.0200.200.130.070S
OGLE-LMC-T2CEP-194BL Her1.314 467517.4060.01717.1340.0180.380.240.080T
OGLE-LMC-T2CEP-136BL Her1.323 038416.4920.01115.9780.0060.310.080.060S
OGLE-LMC-T2CEP-138BL Her1.393 590616.9750.04316.5760.0170.070.070.070T
OGLE-LMC-T2CEP-109BL Her1.414 552818.6100.05617.7900.0380.430.380.030S
OGLE-LMC-T2CEP-105BL Her1.489 297917.1340.01216.9140.0210.410.270.080T
OGLE-LMC-T2CEP-122BL Her1.538 669017.5200.03417.1360.0180.240.230.110T
OGLE-LMC-T2CEP-171BL Her1.554 749217.1750.01716.8750.0170.180.170.170T
OGLE-LMC-T2CEP-068BL Her1.609 300717.2250.02816.9420.0180.270.260.100T
OGLE-LMC-T2CEP-124BL Her1.734 866617.2800.00916.9530.0300.300.300.110S
OGLE-LMC-T2CEP-008BL Her1.746 098917.2570.02317.3890.0280.080.080.100T
OGLE-LMC-T2CEP-141BL Her1.822 953917.3890.02317.0480.0210.360.400.100T
OGLE-LMC-T2CEP-140BL Her1.841 143517.1270.01216.7790.0140.210.270.080S
OGLE-LMC-T2CEP-144BL Her1.937 450216.7260.01716.3020.0110.220.200.120S
OGLE-LMC-T2CEP-130BL Her1.944 693517.0360.01616.7400.0210.360.340.060T
OGLE-LMC-T2CEP-088BL Her1.950 749017.1580.01217.1470.0280.090.090.060T
OGLE-LMC-T2CEP-116BL Her1.966 679317.0860.03816.7460.0070.230.320.060S
OGLE-LMC-T2CEP-121BL Her2.061 365517.2340.03316.8540.0140.450.430.030T
OGLE-LMC-T2CEP-166BL Her2.110 598716.3430.01515.9220.0060.230.220.190T
OGLE-LMC-T2CEP-064BL Her2.127 890617.0430.01916.6980.0250.470.450.070T
OGLE-LMC-T2CEP-167BL Her2.311 823817.0910.04516.6850.0100.500.480.320T
OGLE-LMC-T2CEP-092BL Her2.616 768416.8640.09716.5260.0660.690.660.050T
OGLE-LMC-T2CEP-148BL Her2.671 733816.8530.01116.5160.0150.430.560.060S
OGLE-LMC-T2CEP-195BL Her2.752 929216.8500.02116.4740.0080.550.460.080T
OGLE-LMC-T2CEP-113BL Her3.085 460216.2850.00215.9350.0080.100.060.020S
OGLE-LMC-T2CEP-049BL Her3.235 275116.3590.01515.9260.0100.250.240.070T
OGLE-LMC-T2CEP-145BL Her3.337 301916.2690.00816.0470.0150.110.080.120S
OGLE-LMC-T2CEP-085BL Her3.405 095516.6400.01716.1910.0110.470.450.090T
OGLE-LMC-T2CEP-134pW Vir4.075 725815.7820.00915.5140.0070.310.360.080S
OGLE-LMC-T2CEP-173W Vir4.147 881116.0490.01815.4520.0050.120.110.170T
OGLE-LMC-T2CEP-120W Vir4.559 053016.3540.00715.9510.0090.380.380.130S
OGLE-LMC-T2CEP-052pW Vir4.687 925316.0310.01815.7410.0220.140.130.070T
OGLE-LMC-T2CEP-098pW Vir4.973 737214.0560.01413.8920.0050.150.140.120T
OGLE-LMC-T2CEP-087W Vir5.184 979016.3020.01315.8590.0150.300.310.090S
OGLE-LMC-T2CEP-023pW Vir5.234 800715.0050.04314.7200.0130.360.340.040T
OGLE-LMC-T2CEP-083pW Vir5.967 649615.9360.05415.4620.0110.480.460.100T
OGLE-LMC-T2CEP-062W Vir6.046 676416.0600.01915.4310.0030.050.050.090T
OGLE-LMC-T2CEP-133W Vir6.281 955116.0130.01015.5640.0130.090.090.040T
OGLE-LMC-T2CEP-137W Vir6.362 349916.0440.00415.6300.0100.110.110.110S
OGLE-LMC-T2CEP-183W Vir6.509 627516.3250.01615.7390.0160.150.140.200T
OGLE-LMC-T2CEP-159W Vir6.625 569616.0890.01515.6050.0100.090.090.110T
OGLE-LMC-T2CEP-117W Vir6.629 348716.0070.01215.5790.0050.120.110.080T
OGLE-LMC-T2CEP-106W Vir6.706 736315.9560.05515.4740.0100.160.150.050T
OGLE-LMC-T2CEP-078pW Vir6.716 294315.3490.01614.7640.0110.150.140.090T
OGLE-LMC-T2CEP-063W Vir6.924 580016.0400.02315.5770.0160.140.130.050T
OGLE-LMC-T2CEP-110W Vir7.078 468415.9780.00815.5110.0170.160.150.120S
OGLE-LMC-T2CEP-181pW Vir7.212 532315.5050.01315.1510.0050.070.070.130T
OGLE-LMC-T2CEP-047W Vir7.286 212315.9430.01815.5110.0110.140.130.070T
OGLE-LMC-T2CEP-056W Vir7.289 638215.9650.01715.5220.0040.160.150.110T
OGLE-LMC-T2CEP-100W Vir7.431 095015.9650.01215.6470.0200.290.280.080T
OGLE-LMC-T2CEP-111W Vir7.495 683815.8650.01115.4410.0060.190.180.060T
OGLE-LMC-T2CEP-170W Vir7.682 906215.9260.01815.4230.0040.160.150.180T
OGLE-LMC-T2CEP-151W Vir7.887 245815.8140.01615.3660.0090.140.130.110T
OGLE-LMC-T2CEP-179W Vir8.050 065015.9320.01415.3780.0050.140.130.110T
OGLE-LMC-T2CEP-182W Vir8.226 419415.6280.03515.2180.0070.370.350.130T
OGLE-LMC-T2CEP-094W Vir8.468 489715.6590.04815.1430.0060.100.100.040T
OGLE-LMC-T2CEP-019pW Vir8.674 863415.2630.02414.8800.0150.330.310.110T
OGLE-LMC-T2CEP-039W Vir8.715 837315.6820.01815.2170.0090.190.180.040T
OGLE-LMC-T2CEP-028pW Vir8.784 807315.0830.01614.7910.0060.320.300.050T
OGLE-LMC-T2CEP-074W Vir8.988 343915.4140.01915.0250.0250.220.210.060T
OGLE-LMC-T2CEP-152W Vir9.314 921115.5590.01315.0800.0040.390.370.100T
OGLE-LMC-T2CEP-021pW Vir9.759 502415.3090.04615.0590.0180.160.150.070T
OGLE-LMC-T2CEP-132pW Vir10.017 828715.2270.01514.8040.0050.220.090.080S
OGLE-LMC-T2CEP-146W Vir10.079 592515.5760.02615.1720.0210.370.290.100S
OGLE-LMC-T2CEP-097W Vir10.510 166615.5300.06215.0680.0060.280.270.050T
OGLE-LMC-T2CEP-022W Vir10.716 780015.5980.01115.1260.0150.350.330.030T
OGLE-LMC-T2CEP-201pW Vir11.007 243114.1950.01813.8920.0070.060.060.050T
OGLE-LMC-T2CEP-101W Vir11.418 559615.4270.00915.0090.0070.450.400.080S
OGLE-LMC-T2CEP-013W Vir11.544 611315.4980.01415.0010.0130.220.210.090T
OGLE-LMC-T2CEP-178W Vir12.212 366715.5170.02014.9850.0080.330.310.150T
OGLE-LMC-T2CEP-127W Vir12.669 118515.3720.02214.8510.0110.480.370.070S
OGLE-LMC-T2CEP-118W Vir12.698 580415.4120.03814.9140.0070.720.690.100T
OGLE-LMC-T2CEP-103W Vir12.908 277515.3360.01114.8590.0190.400.380.080T
OGLE-LMC-T2CEP-044W Vir13.270 100415.4550.03014.8350.0130.300.290.090T
OGLE-LMC-T2CEP-026W Vir13.577 868915.2090.08914.8230.0120.390.370.080T
OGLE-LMC-T2CEP-096W Vir13.925 722415.2770.05614.7760.0060.810.750.090S
OGLE-LMC-T2CEP-157W Vir14.334 646615.3040.04514.7820.0430.660.630.100T
OGLE-LMC-T2CEP-017W Vir14.454 754415.3540.05614.7850.0210.810.770.110T
OGLE-LMC-T2CEP-143W Vir14.570 184614.9910.07514.7430.0681.050.720.060S
OGLE-LMC-T2CEP-046W Vir14.743 795614.9210.05814.3600.0210.620.590.060T
OGLE-LMC-T2CEP-139W Vir14.780 410415.2200.01414.7090.0050.500.510.150S
OGLE-LMC-T2CEP-177W Vir15.035 902715.2450.02414.7410.0070.690.660.270T
OGLE-LMC-T2CEP-099W Vir15.486 787715.0940.00314.5640.0050.510.520.100S
OGLE-LMC-T2CEP-086W Vir15.845 500015.0240.01114.5860.0170.790.800.030S
OGLE-LMC-T2CEP-126W Vir16.326 778515.3230.02314.7330.0130.770.730.090T
OGLE-LMC-T2CEP-057W Vir16.632 041515.0520.02114.5660.0130.820.780.060T
OGLE-LMC-T2CEP-093W Vir17.593 049214.5240.02114.1360.0190.610.470.040S
OGLE-LMC-T2CEP-128W Vir18.492 693814.7870.02314.3630.0540.710.680.050T
OGLE-LMC-T2CEP-058RV Tau21.482 950914.7770.01714.2080.0140.750.710.090T
OGLE-LMC-T2CEP-104RV Tau24.879 948014.1310.02013.4020.0430.320.610.090S
OGLE-LMC-T2CEP-115RV Tau24.966 912614.7900.00214.3340.0130.660.630.030S
OGLE-LMC-T2CEP-192RV Tau26.194 001114.5210.03314.0960.0081.091.040.060T
OGLE-LMC-T2CEP-135RV Tau26.522 363814.3500.01613.7990.0151.090.760.070S
OGLE-LMC-T2CEP-162RV Tau30.394 148314.2940.04313.7260.0430.570.410.220T
OGLE-LMC-T2CEP-180RV Tau30.996 314513.7850.06812.9210.0330.420.400.070T
OGLE-LMC-T2CEP-119RV Tau33.825 093813.8320.02112.9510.0640.890.850.080T
OGLE-LMC-T2CEP-050RV Tau34.748 343814.2570.03013.8110.0140.190.180.070T
OGLE-LMC-T2CEP-091RV Tau35.749 345613.6520.04512.6930.0550.620.640.070S
OGLE-LMC-T2CEP-203RV Tau37.126 746314.4160.00713.7390.0040.610.390.040S
OGLE-LMC-T2CEP-202RV Tau38.135 567414.3100.01313.7530.0150.070.070.090T
OGLE-LMC-T2CEP-112RV Tau39.397 703713.5310.02113.1630.0090.270.240.030S
OGLE-LMC-T2CEP-080RV Tau40.916 413113.9570.02713.2530.0470.440.420.040T
OGLE-LMC-T2CEP-149RV Tau42.480 612913.6490.03913.2520.0070.130.120.140T
OGLE-LMC-T2CEP-032RV Tau44.561 194813.2320.03012.2120.0900.360.340.050T
OGLE-LMC-T2CEP-147RV Tau46.795 841913.1450.01712.6580.0130.060.060.090T
OGLE-LMC-T2CEP-174RV Tau46.818 956213.0890.01612.0480.0300.460.440.150T
OGLE-LMC-T2CEP-067RV Tau48.231 705113.1760.02212.2630.0520.200.190.100T
OGLE-LMC-T2CEP-075RV Tau50.186 568613.9000.11013.5020.0330.780.740.070T
OGLE-LMC-T2CEP-129RV Tau62.508 946613.5140.03513.1230.0130.160.140.070S
OGLE-LMC-T2CEP-045RV Tau63.386 339113.0980.02412.6640.0210.160.150.070T
Table 4.

Results for the 120 T2CEPs with useful NIR light curves analysed in this paper. The columns report (1) OGLE identification; (2) variability class; (3) period (OGLE); (4) intensity-averaged J magnitude; (5) uncertainty on the 〈J〉 (6) intensity-averaged Ks magnitude; (7) uncertainty on the 〈Ks〉; (8) peak-to-peak amplitude in J; (9) peak-to-peak amplitude in Ks; (10) adopted reddening; (11) T = results in J obtained on the basis of the Ks template, S = results in J obtained on the basis of direct spline fitting to the data.

IDVar. classPeriodJσJKs|$\sigma _{\langle K_\mathrm{s} \rangle }$|Amp(J)Amp(Ks)E(V − I)Note
(d)(mag)(mag)(mag)(mag)(mag)(mag)(mag)
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)
OGLE-LMC-T2CEP-123BL Her1.002 626316.9390.02116.4860.0130.050.050.080T
OGLE-LMC-T2CEP-069BL Her1.021 254217.0420.03316.5850.0210.100.100.050T
OGLE-LMC-T2CEP-114BL Her1.091 088617.3290.06916.8310.0190.170.160.130T
OGLE-LMC-T2CEP-020BL Her1.108 125816.7350.04316.3100.0220.090.070.060T
OGLE-LMC-T2CEP-071BL Her1.152 163817.5220.02217.3260.0260.400.380.070T
OGLE-LMC-T2CEP-089BL Her1.167 297717.7150.01817.4790.0430.400.320.040S
OGLE-LMC-T2CEP-061BL Her1.181 512417.5810.03717.4580.0310.380.190.090T
OGLE-LMC-T2CEP-107BL Her1.209 145116.9790.00516.5260.0160.190.130.030S
OGLE-LMC-T2CEP-077BL Her1.213 802317.5210.04517.3170.0250.180.170.020T
OGLE-LMC-T2CEP-165BL Her1.240 833017.8890.04917.3810.0240.340.320.180T
OGLE-LMC-T2CEP-102BL Her1.266 017617.1460.01016.8170.0200.200.130.070S
OGLE-LMC-T2CEP-194BL Her1.314 467517.4060.01717.1340.0180.380.240.080T
OGLE-LMC-T2CEP-136BL Her1.323 038416.4920.01115.9780.0060.310.080.060S
OGLE-LMC-T2CEP-138BL Her1.393 590616.9750.04316.5760.0170.070.070.070T
OGLE-LMC-T2CEP-109BL Her1.414 552818.6100.05617.7900.0380.430.380.030S
OGLE-LMC-T2CEP-105BL Her1.489 297917.1340.01216.9140.0210.410.270.080T
OGLE-LMC-T2CEP-122BL Her1.538 669017.5200.03417.1360.0180.240.230.110T
OGLE-LMC-T2CEP-171BL Her1.554 749217.1750.01716.8750.0170.180.170.170T
OGLE-LMC-T2CEP-068BL Her1.609 300717.2250.02816.9420.0180.270.260.100T
OGLE-LMC-T2CEP-124BL Her1.734 866617.2800.00916.9530.0300.300.300.110S
OGLE-LMC-T2CEP-008BL Her1.746 098917.2570.02317.3890.0280.080.080.100T
OGLE-LMC-T2CEP-141BL Her1.822 953917.3890.02317.0480.0210.360.400.100T
OGLE-LMC-T2CEP-140BL Her1.841 143517.1270.01216.7790.0140.210.270.080S
OGLE-LMC-T2CEP-144BL Her1.937 450216.7260.01716.3020.0110.220.200.120S
OGLE-LMC-T2CEP-130BL Her1.944 693517.0360.01616.7400.0210.360.340.060T
OGLE-LMC-T2CEP-088BL Her1.950 749017.1580.01217.1470.0280.090.090.060T
OGLE-LMC-T2CEP-116BL Her1.966 679317.0860.03816.7460.0070.230.320.060S
OGLE-LMC-T2CEP-121BL Her2.061 365517.2340.03316.8540.0140.450.430.030T
OGLE-LMC-T2CEP-166BL Her2.110 598716.3430.01515.9220.0060.230.220.190T
OGLE-LMC-T2CEP-064BL Her2.127 890617.0430.01916.6980.0250.470.450.070T
OGLE-LMC-T2CEP-167BL Her2.311 823817.0910.04516.6850.0100.500.480.320T
OGLE-LMC-T2CEP-092BL Her2.616 768416.8640.09716.5260.0660.690.660.050T
OGLE-LMC-T2CEP-148BL Her2.671 733816.8530.01116.5160.0150.430.560.060S
OGLE-LMC-T2CEP-195BL Her2.752 929216.8500.02116.4740.0080.550.460.080T
OGLE-LMC-T2CEP-113BL Her3.085 460216.2850.00215.9350.0080.100.060.020S
OGLE-LMC-T2CEP-049BL Her3.235 275116.3590.01515.9260.0100.250.240.070T
OGLE-LMC-T2CEP-145BL Her3.337 301916.2690.00816.0470.0150.110.080.120S
OGLE-LMC-T2CEP-085BL Her3.405 095516.6400.01716.1910.0110.470.450.090T
OGLE-LMC-T2CEP-134pW Vir4.075 725815.7820.00915.5140.0070.310.360.080S
OGLE-LMC-T2CEP-173W Vir4.147 881116.0490.01815.4520.0050.120.110.170T
OGLE-LMC-T2CEP-120W Vir4.559 053016.3540.00715.9510.0090.380.380.130S
OGLE-LMC-T2CEP-052pW Vir4.687 925316.0310.01815.7410.0220.140.130.070T
OGLE-LMC-T2CEP-098pW Vir4.973 737214.0560.01413.8920.0050.150.140.120T
OGLE-LMC-T2CEP-087W Vir5.184 979016.3020.01315.8590.0150.300.310.090S
OGLE-LMC-T2CEP-023pW Vir5.234 800715.0050.04314.7200.0130.360.340.040T
OGLE-LMC-T2CEP-083pW Vir5.967 649615.9360.05415.4620.0110.480.460.100T
OGLE-LMC-T2CEP-062W Vir6.046 676416.0600.01915.4310.0030.050.050.090T
OGLE-LMC-T2CEP-133W Vir6.281 955116.0130.01015.5640.0130.090.090.040T
OGLE-LMC-T2CEP-137W Vir6.362 349916.0440.00415.6300.0100.110.110.110S
OGLE-LMC-T2CEP-183W Vir6.509 627516.3250.01615.7390.0160.150.140.200T
OGLE-LMC-T2CEP-159W Vir6.625 569616.0890.01515.6050.0100.090.090.110T
OGLE-LMC-T2CEP-117W Vir6.629 348716.0070.01215.5790.0050.120.110.080T
OGLE-LMC-T2CEP-106W Vir6.706 736315.9560.05515.4740.0100.160.150.050T
OGLE-LMC-T2CEP-078pW Vir6.716 294315.3490.01614.7640.0110.150.140.090T
OGLE-LMC-T2CEP-063W Vir6.924 580016.0400.02315.5770.0160.140.130.050T
OGLE-LMC-T2CEP-110W Vir7.078 468415.9780.00815.5110.0170.160.150.120S
OGLE-LMC-T2CEP-181pW Vir7.212 532315.5050.01315.1510.0050.070.070.130T
OGLE-LMC-T2CEP-047W Vir7.286 212315.9430.01815.5110.0110.140.130.070T
OGLE-LMC-T2CEP-056W Vir7.289 638215.9650.01715.5220.0040.160.150.110T
OGLE-LMC-T2CEP-100W Vir7.431 095015.9650.01215.6470.0200.290.280.080T
OGLE-LMC-T2CEP-111W Vir7.495 683815.8650.01115.4410.0060.190.180.060T
OGLE-LMC-T2CEP-170W Vir7.682 906215.9260.01815.4230.0040.160.150.180T
OGLE-LMC-T2CEP-151W Vir7.887 245815.8140.01615.3660.0090.140.130.110T
OGLE-LMC-T2CEP-179W Vir8.050 065015.9320.01415.3780.0050.140.130.110T
OGLE-LMC-T2CEP-182W Vir8.226 419415.6280.03515.2180.0070.370.350.130T
OGLE-LMC-T2CEP-094W Vir8.468 489715.6590.04815.1430.0060.100.100.040T
OGLE-LMC-T2CEP-019pW Vir8.674 863415.2630.02414.8800.0150.330.310.110T
OGLE-LMC-T2CEP-039W Vir8.715 837315.6820.01815.2170.0090.190.180.040T
OGLE-LMC-T2CEP-028pW Vir8.784 807315.0830.01614.7910.0060.320.300.050T
OGLE-LMC-T2CEP-074W Vir8.988 343915.4140.01915.0250.0250.220.210.060T
OGLE-LMC-T2CEP-152W Vir9.314 921115.5590.01315.0800.0040.390.370.100T
OGLE-LMC-T2CEP-021pW Vir9.759 502415.3090.04615.0590.0180.160.150.070T
OGLE-LMC-T2CEP-132pW Vir10.017 828715.2270.01514.8040.0050.220.090.080S
OGLE-LMC-T2CEP-146W Vir10.079 592515.5760.02615.1720.0210.370.290.100S
OGLE-LMC-T2CEP-097W Vir10.510 166615.5300.06215.0680.0060.280.270.050T
OGLE-LMC-T2CEP-022W Vir10.716 780015.5980.01115.1260.0150.350.330.030T
OGLE-LMC-T2CEP-201pW Vir11.007 243114.1950.01813.8920.0070.060.060.050T
OGLE-LMC-T2CEP-101W Vir11.418 559615.4270.00915.0090.0070.450.400.080S
OGLE-LMC-T2CEP-013W Vir11.544 611315.4980.01415.0010.0130.220.210.090T
OGLE-LMC-T2CEP-178W Vir12.212 366715.5170.02014.9850.0080.330.310.150T
OGLE-LMC-T2CEP-127W Vir12.669 118515.3720.02214.8510.0110.480.370.070S
OGLE-LMC-T2CEP-118W Vir12.698 580415.4120.03814.9140.0070.720.690.100T
OGLE-LMC-T2CEP-103W Vir12.908 277515.3360.01114.8590.0190.400.380.080T
OGLE-LMC-T2CEP-044W Vir13.270 100415.4550.03014.8350.0130.300.290.090T
OGLE-LMC-T2CEP-026W Vir13.577 868915.2090.08914.8230.0120.390.370.080T
OGLE-LMC-T2CEP-096W Vir13.925 722415.2770.05614.7760.0060.810.750.090S
OGLE-LMC-T2CEP-157W Vir14.334 646615.3040.04514.7820.0430.660.630.100T
OGLE-LMC-T2CEP-017W Vir14.454 754415.3540.05614.7850.0210.810.770.110T
OGLE-LMC-T2CEP-143W Vir14.570 184614.9910.07514.7430.0681.050.720.060S
OGLE-LMC-T2CEP-046W Vir14.743 795614.9210.05814.3600.0210.620.590.060T
OGLE-LMC-T2CEP-139W Vir14.780 410415.2200.01414.7090.0050.500.510.150S
OGLE-LMC-T2CEP-177W Vir15.035 902715.2450.02414.7410.0070.690.660.270T
OGLE-LMC-T2CEP-099W Vir15.486 787715.0940.00314.5640.0050.510.520.100S
OGLE-LMC-T2CEP-086W Vir15.845 500015.0240.01114.5860.0170.790.800.030S
OGLE-LMC-T2CEP-126W Vir16.326 778515.3230.02314.7330.0130.770.730.090T
OGLE-LMC-T2CEP-057W Vir16.632 041515.0520.02114.5660.0130.820.780.060T
OGLE-LMC-T2CEP-093W Vir17.593 049214.5240.02114.1360.0190.610.470.040S
OGLE-LMC-T2CEP-128W Vir18.492 693814.7870.02314.3630.0540.710.680.050T
OGLE-LMC-T2CEP-058RV Tau21.482 950914.7770.01714.2080.0140.750.710.090T
OGLE-LMC-T2CEP-104RV Tau24.879 948014.1310.02013.4020.0430.320.610.090S
OGLE-LMC-T2CEP-115RV Tau24.966 912614.7900.00214.3340.0130.660.630.030S
OGLE-LMC-T2CEP-192RV Tau26.194 001114.5210.03314.0960.0081.091.040.060T
OGLE-LMC-T2CEP-135RV Tau26.522 363814.3500.01613.7990.0151.090.760.070S
OGLE-LMC-T2CEP-162RV Tau30.394 148314.2940.04313.7260.0430.570.410.220T
OGLE-LMC-T2CEP-180RV Tau30.996 314513.7850.06812.9210.0330.420.400.070T
OGLE-LMC-T2CEP-119RV Tau33.825 093813.8320.02112.9510.0640.890.850.080T
OGLE-LMC-T2CEP-050RV Tau34.748 343814.2570.03013.8110.0140.190.180.070T
OGLE-LMC-T2CEP-091RV Tau35.749 345613.6520.04512.6930.0550.620.640.070S
OGLE-LMC-T2CEP-203RV Tau37.126 746314.4160.00713.7390.0040.610.390.040S
OGLE-LMC-T2CEP-202RV Tau38.135 567414.3100.01313.7530.0150.070.070.090T
OGLE-LMC-T2CEP-112RV Tau39.397 703713.5310.02113.1630.0090.270.240.030S
OGLE-LMC-T2CEP-080RV Tau40.916 413113.9570.02713.2530.0470.440.420.040T
OGLE-LMC-T2CEP-149RV Tau42.480 612913.6490.03913.2520.0070.130.120.140T
OGLE-LMC-T2CEP-032RV Tau44.561 194813.2320.03012.2120.0900.360.340.050T
OGLE-LMC-T2CEP-147RV Tau46.795 841913.1450.01712.6580.0130.060.060.090T
OGLE-LMC-T2CEP-174RV Tau46.818 956213.0890.01612.0480.0300.460.440.150T
OGLE-LMC-T2CEP-067RV Tau48.231 705113.1760.02212.2630.0520.200.190.100T
OGLE-LMC-T2CEP-075RV Tau50.186 568613.9000.11013.5020.0330.780.740.070T
OGLE-LMC-T2CEP-129RV Tau62.508 946613.5140.03513.1230.0130.160.140.070S
OGLE-LMC-T2CEP-045RV Tau63.386 339113.0980.02412.6640.0210.160.150.070T
IDVar. classPeriodJσJKs|$\sigma _{\langle K_\mathrm{s} \rangle }$|Amp(J)Amp(Ks)E(V − I)Note
(d)(mag)(mag)(mag)(mag)(mag)(mag)(mag)
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)
OGLE-LMC-T2CEP-123BL Her1.002 626316.9390.02116.4860.0130.050.050.080T
OGLE-LMC-T2CEP-069BL Her1.021 254217.0420.03316.5850.0210.100.100.050T
OGLE-LMC-T2CEP-114BL Her1.091 088617.3290.06916.8310.0190.170.160.130T
OGLE-LMC-T2CEP-020BL Her1.108 125816.7350.04316.3100.0220.090.070.060T
OGLE-LMC-T2CEP-071BL Her1.152 163817.5220.02217.3260.0260.400.380.070T
OGLE-LMC-T2CEP-089BL Her1.167 297717.7150.01817.4790.0430.400.320.040S
OGLE-LMC-T2CEP-061BL Her1.181 512417.5810.03717.4580.0310.380.190.090T
OGLE-LMC-T2CEP-107BL Her1.209 145116.9790.00516.5260.0160.190.130.030S
OGLE-LMC-T2CEP-077BL Her1.213 802317.5210.04517.3170.0250.180.170.020T
OGLE-LMC-T2CEP-165BL Her1.240 833017.8890.04917.3810.0240.340.320.180T
OGLE-LMC-T2CEP-102BL Her1.266 017617.1460.01016.8170.0200.200.130.070S
OGLE-LMC-T2CEP-194BL Her1.314 467517.4060.01717.1340.0180.380.240.080T
OGLE-LMC-T2CEP-136BL Her1.323 038416.4920.01115.9780.0060.310.080.060S
OGLE-LMC-T2CEP-138BL Her1.393 590616.9750.04316.5760.0170.070.070.070T
OGLE-LMC-T2CEP-109BL Her1.414 552818.6100.05617.7900.0380.430.380.030S
OGLE-LMC-T2CEP-105BL Her1.489 297917.1340.01216.9140.0210.410.270.080T
OGLE-LMC-T2CEP-122BL Her1.538 669017.5200.03417.1360.0180.240.230.110T
OGLE-LMC-T2CEP-171BL Her1.554 749217.1750.01716.8750.0170.180.170.170T
OGLE-LMC-T2CEP-068BL Her1.609 300717.2250.02816.9420.0180.270.260.100T
OGLE-LMC-T2CEP-124BL Her1.734 866617.2800.00916.9530.0300.300.300.110S
OGLE-LMC-T2CEP-008BL Her1.746 098917.2570.02317.3890.0280.080.080.100T
OGLE-LMC-T2CEP-141BL Her1.822 953917.3890.02317.0480.0210.360.400.100T
OGLE-LMC-T2CEP-140BL Her1.841 143517.1270.01216.7790.0140.210.270.080S
OGLE-LMC-T2CEP-144BL Her1.937 450216.7260.01716.3020.0110.220.200.120S
OGLE-LMC-T2CEP-130BL Her1.944 693517.0360.01616.7400.0210.360.340.060T
OGLE-LMC-T2CEP-088BL Her1.950 749017.1580.01217.1470.0280.090.090.060T
OGLE-LMC-T2CEP-116BL Her1.966 679317.0860.03816.7460.0070.230.320.060S
OGLE-LMC-T2CEP-121BL Her2.061 365517.2340.03316.8540.0140.450.430.030T
OGLE-LMC-T2CEP-166BL Her2.110 598716.3430.01515.9220.0060.230.220.190T
OGLE-LMC-T2CEP-064BL Her2.127 890617.0430.01916.6980.0250.470.450.070T
OGLE-LMC-T2CEP-167BL Her2.311 823817.0910.04516.6850.0100.500.480.320T
OGLE-LMC-T2CEP-092BL Her2.616 768416.8640.09716.5260.0660.690.660.050T
OGLE-LMC-T2CEP-148BL Her2.671 733816.8530.01116.5160.0150.430.560.060S
OGLE-LMC-T2CEP-195BL Her2.752 929216.8500.02116.4740.0080.550.460.080T
OGLE-LMC-T2CEP-113BL Her3.085 460216.2850.00215.9350.0080.100.060.020S
OGLE-LMC-T2CEP-049BL Her3.235 275116.3590.01515.9260.0100.250.240.070T
OGLE-LMC-T2CEP-145BL Her3.337 301916.2690.00816.0470.0150.110.080.120S
OGLE-LMC-T2CEP-085BL Her3.405 095516.6400.01716.1910.0110.470.450.090T
OGLE-LMC-T2CEP-134pW Vir4.075 725815.7820.00915.5140.0070.310.360.080S
OGLE-LMC-T2CEP-173W Vir4.147 881116.0490.01815.4520.0050.120.110.170T
OGLE-LMC-T2CEP-120W Vir4.559 053016.3540.00715.9510.0090.380.380.130S
OGLE-LMC-T2CEP-052pW Vir4.687 925316.0310.01815.7410.0220.140.130.070T
OGLE-LMC-T2CEP-098pW Vir4.973 737214.0560.01413.8920.0050.150.140.120T
OGLE-LMC-T2CEP-087W Vir5.184 979016.3020.01315.8590.0150.300.310.090S
OGLE-LMC-T2CEP-023pW Vir5.234 800715.0050.04314.7200.0130.360.340.040T
OGLE-LMC-T2CEP-083pW Vir5.967 649615.9360.05415.4620.0110.480.460.100T
OGLE-LMC-T2CEP-062W Vir6.046 676416.0600.01915.4310.0030.050.050.090T
OGLE-LMC-T2CEP-133W Vir6.281 955116.0130.01015.5640.0130.090.090.040T
OGLE-LMC-T2CEP-137W Vir6.362 349916.0440.00415.6300.0100.110.110.110S
OGLE-LMC-T2CEP-183W Vir6.509 627516.3250.01615.7390.0160.150.140.200T
OGLE-LMC-T2CEP-159W Vir6.625 569616.0890.01515.6050.0100.090.090.110T
OGLE-LMC-T2CEP-117W Vir6.629 348716.0070.01215.5790.0050.120.110.080T
OGLE-LMC-T2CEP-106W Vir6.706 736315.9560.05515.4740.0100.160.150.050T
OGLE-LMC-T2CEP-078pW Vir6.716 294315.3490.01614.7640.0110.150.140.090T
OGLE-LMC-T2CEP-063W Vir6.924 580016.0400.02315.5770.0160.140.130.050T
OGLE-LMC-T2CEP-110W Vir7.078 468415.9780.00815.5110.0170.160.150.120S
OGLE-LMC-T2CEP-181pW Vir7.212 532315.5050.01315.1510.0050.070.070.130T
OGLE-LMC-T2CEP-047W Vir7.286 212315.9430.01815.5110.0110.140.130.070T
OGLE-LMC-T2CEP-056W Vir7.289 638215.9650.01715.5220.0040.160.150.110T
OGLE-LMC-T2CEP-100W Vir7.431 095015.9650.01215.6470.0200.290.280.080T
OGLE-LMC-T2CEP-111W Vir7.495 683815.8650.01115.4410.0060.190.180.060T
OGLE-LMC-T2CEP-170W Vir7.682 906215.9260.01815.4230.0040.160.150.180T
OGLE-LMC-T2CEP-151W Vir7.887 245815.8140.01615.3660.0090.140.130.110T
OGLE-LMC-T2CEP-179W Vir8.050 065015.9320.01415.3780.0050.140.130.110T
OGLE-LMC-T2CEP-182W Vir8.226 419415.6280.03515.2180.0070.370.350.130T
OGLE-LMC-T2CEP-094W Vir8.468 489715.6590.04815.1430.0060.100.100.040T
OGLE-LMC-T2CEP-019pW Vir8.674 863415.2630.02414.8800.0150.330.310.110T
OGLE-LMC-T2CEP-039W Vir8.715 837315.6820.01815.2170.0090.190.180.040T
OGLE-LMC-T2CEP-028pW Vir8.784 807315.0830.01614.7910.0060.320.300.050T
OGLE-LMC-T2CEP-074W Vir8.988 343915.4140.01915.0250.0250.220.210.060T
OGLE-LMC-T2CEP-152W Vir9.314 921115.5590.01315.0800.0040.390.370.100T
OGLE-LMC-T2CEP-021pW Vir9.759 502415.3090.04615.0590.0180.160.150.070T
OGLE-LMC-T2CEP-132pW Vir10.017 828715.2270.01514.8040.0050.220.090.080S
OGLE-LMC-T2CEP-146W Vir10.079 592515.5760.02615.1720.0210.370.290.100S
OGLE-LMC-T2CEP-097W Vir10.510 166615.5300.06215.0680.0060.280.270.050T
OGLE-LMC-T2CEP-022W Vir10.716 780015.5980.01115.1260.0150.350.330.030T
OGLE-LMC-T2CEP-201pW Vir11.007 243114.1950.01813.8920.0070.060.060.050T
OGLE-LMC-T2CEP-101W Vir11.418 559615.4270.00915.0090.0070.450.400.080S
OGLE-LMC-T2CEP-013W Vir11.544 611315.4980.01415.0010.0130.220.210.090T
OGLE-LMC-T2CEP-178W Vir12.212 366715.5170.02014.9850.0080.330.310.150T
OGLE-LMC-T2CEP-127W Vir12.669 118515.3720.02214.8510.0110.480.370.070S
OGLE-LMC-T2CEP-118W Vir12.698 580415.4120.03814.9140.0070.720.690.100T
OGLE-LMC-T2CEP-103W Vir12.908 277515.3360.01114.8590.0190.400.380.080T
OGLE-LMC-T2CEP-044W Vir13.270 100415.4550.03014.8350.0130.300.290.090T
OGLE-LMC-T2CEP-026W Vir13.577 868915.2090.08914.8230.0120.390.370.080T
OGLE-LMC-T2CEP-096W Vir13.925 722415.2770.05614.7760.0060.810.750.090S
OGLE-LMC-T2CEP-157W Vir14.334 646615.3040.04514.7820.0430.660.630.100T
OGLE-LMC-T2CEP-017W Vir14.454 754415.3540.05614.7850.0210.810.770.110T
OGLE-LMC-T2CEP-143W Vir14.570 184614.9910.07514.7430.0681.050.720.060S
OGLE-LMC-T2CEP-046W Vir14.743 795614.9210.05814.3600.0210.620.590.060T
OGLE-LMC-T2CEP-139W Vir14.780 410415.2200.01414.7090.0050.500.510.150S
OGLE-LMC-T2CEP-177W Vir15.035 902715.2450.02414.7410.0070.690.660.270T
OGLE-LMC-T2CEP-099W Vir15.486 787715.0940.00314.5640.0050.510.520.100S
OGLE-LMC-T2CEP-086W Vir15.845 500015.0240.01114.5860.0170.790.800.030S
OGLE-LMC-T2CEP-126W Vir16.326 778515.3230.02314.7330.0130.770.730.090T
OGLE-LMC-T2CEP-057W Vir16.632 041515.0520.02114.5660.0130.820.780.060T
OGLE-LMC-T2CEP-093W Vir17.593 049214.5240.02114.1360.0190.610.470.040S
OGLE-LMC-T2CEP-128W Vir18.492 693814.7870.02314.3630.0540.710.680.050T
OGLE-LMC-T2CEP-058RV Tau21.482 950914.7770.01714.2080.0140.750.710.090T
OGLE-LMC-T2CEP-104RV Tau24.879 948014.1310.02013.4020.0430.320.610.090S
OGLE-LMC-T2CEP-115RV Tau24.966 912614.7900.00214.3340.0130.660.630.030S
OGLE-LMC-T2CEP-192RV Tau26.194 001114.5210.03314.0960.0081.091.040.060T
OGLE-LMC-T2CEP-135RV Tau26.522 363814.3500.01613.7990.0151.090.760.070S
OGLE-LMC-T2CEP-162RV Tau30.394 148314.2940.04313.7260.0430.570.410.220T
OGLE-LMC-T2CEP-180RV Tau30.996 314513.7850.06812.9210.0330.420.400.070T
OGLE-LMC-T2CEP-119RV Tau33.825 093813.8320.02112.9510.0640.890.850.080T
OGLE-LMC-T2CEP-050RV Tau34.748 343814.2570.03013.8110.0140.190.180.070T
OGLE-LMC-T2CEP-091RV Tau35.749 345613.6520.04512.6930.0550.620.640.070S
OGLE-LMC-T2CEP-203RV Tau37.126 746314.4160.00713.7390.0040.610.390.040S
OGLE-LMC-T2CEP-202RV Tau38.135 567414.3100.01313.7530.0150.070.070.090T
OGLE-LMC-T2CEP-112RV Tau39.397 703713.5310.02113.1630.0090.270.240.030S
OGLE-LMC-T2CEP-080RV Tau40.916 413113.9570.02713.2530.0470.440.420.040T
OGLE-LMC-T2CEP-149RV Tau42.480 612913.6490.03913.2520.0070.130.120.140T
OGLE-LMC-T2CEP-032RV Tau44.561 194813.2320.03012.2120.0900.360.340.050T
OGLE-LMC-T2CEP-147RV Tau46.795 841913.1450.01712.6580.0130.060.060.090T
OGLE-LMC-T2CEP-174RV Tau46.818 956213.0890.01612.0480.0300.460.440.150T
OGLE-LMC-T2CEP-067RV Tau48.231 705113.1760.02212.2630.0520.200.190.100T
OGLE-LMC-T2CEP-075RV Tau50.186 568613.9000.11013.5020.0330.780.740.070T
OGLE-LMC-T2CEP-129RV Tau62.508 946613.5140.03513.1230.0130.160.140.070S
OGLE-LMC-T2CEP-045RV Tau63.386 339113.0980.02412.6640.0210.160.150.070T

We recall that the J and Ks photometry presented in this paper is set in the VISTA system. A consistent comparison between our results and those in the widely used 2MASS system (Two Micron All Sky Survey; Skrutskie et al. 1996) can be performed after applying proper system transformations as for instance those provided by the Cambridge Astronomy Survey Unit (CASU):6 (J − Ks)(2MASS) = 1.081(J − Ks)(VISTA), J(2MASS) = J(VISTA) + 0.07(J − Ks)(VISTA) and Ks(2MASS) = Ks(VISTA)−0.011(J − Ks)(VISTA).

Since the 〈J〉 − 〈Ks〉 colour of our T2CEP sample typically ranges from 0.1 to 0.6 mag, the VISTA and 2MASS Ks can be considered equivalent for T2CEPs (see Fig. 4) and for CCs (see Ripepi et al. 2012b), to a very good approximation (better than ∼5 mmag).

Figure 4.

Observed instability strip in the plane Ks, 0 versus (J − Ks)0. Filled circles, open circles, crosses and stars show BL Her, W Vir, pW Vir and RV Tau variables, respectively. The solid lines show the approximate borders of the BL Her/W Vir instability strip. Blue and red edges are described by the following equations: Ks, 0 = 19.1−21(J − Ks)0 (0.06 < (J − Ks)0 < 0.27 mag) and Ks, 0 = 27.1−21(J − Ks)0 (0.44 < (J − Ks)0 < 0.63 mag), respectively.

3 J-, Ks-BAND PL, PLC AND PW RELATIONS

The data reported in Table 4 allow us to calculate different useful relationships adopting various combinations of magnitudes and colours. In particular, we derived PL relations in J and Ks as well as PW and PLC relations for the following combinations: (J, V − J), (Ks,V − Ks) and (Ks,J − Ks).

We first corrected magnitudes and colours for reddening using the recent extinction maps by Haschke, Grebel & Duffau (2011). Individual E(V − I) reddening values for the 120 T2CEPs with useful VMC data are reported in column 10 of Table 4. The reliability of this reddening correction can be questioned by observing that it has been derived from the analysis of the red clump stars, which trace the intermediate-age population (2–9 Gyr) instead of the old one to whom BL Her and W Vir belong. However, we recall that in the NIR bands the interstellar absorption is very low: AJ ∼ 0.25AV and |$A_{K_\mathrm{s}} \sim 0.1 A_{\rm V}$|⁠, where AV is the absorption in the visible. Hence, even in the unlikely case of a 10 per cent large error in our AV estimates, this would introduce an amount of uncertainties of only ∼2.5 per cent and ∼1 per cent in J and Ks, respectively. An a posteriori indication about the global correctness of the adopted reddening correction is represented by the concordance of results provided by the PL (reddening-dependent) and PW (reddening-independent) relations (see Sections 4 and 5). The reddening values were converted using the following equations: E(V − J) = 1.80E(V − I), E(V − Ks) = 2.24E(V − I) and E(J − Ks) = 0.43E(V − I) (Cardelli, Clayton & Mathis 1989; Gao et al. 2013).7 The coefficients of the PW relations were calculated in a similar way.

In principle, an additional preliminary step would be required, i.e. the correction for the inclination of the LMC disc-like structure by de-projecting each T2CEP with respect to the LMC centre. To do this, we followed the procedure suggested in van der Marel & Cioni (2001) and adopted their values of the LMC centre, inclination and position angle of the line of nodes. However, we have a posteriori verified that the introduction of this correction leads to worse results, i.e. larger dispersion in the various relationships mentioned above. To verify if different choices about the inclined disc parameters could improve the results, we have carried out the de-projection using several results present in the literature (see Haschke et al. 2012; Rubele et al. 2012; Subramanian & Subramaniam 2013, and references therein). Under no circumstances, the dispersion of the PWs decreased (we used PWs as reference because they are reddening-free). To explain this occurrence, we can reasonably hypothesize that the T2CEPs (actually BL Her and W Vir), being old (age> 10 Gyr) objects, are not preferentially distributed along the main disc-like structure of the LMC. Alternatively, the adopted parameters for the de-projection are not accurate enough, although this conclusion may be influenced by the relatively small number of objects. Subsequent studies using a larger number of objects observed in the VMC context sampling different populations (CCs, T2CEPs and RR Lyrae stars) will clarify the issue. In any case, in the following analysis we did not apply any magnitude correction accounting for the LMC disc structure.

Figs 5 –8 show all the relationships investigated here. An inspection of these figures confirms the findings by Matsunaga et al. (2009) that BL Her and W Vir star follow a common PL relation, whereas RV Tau show a different and more dispersed relation (the dispersion is less severe in the J than in the Ks band). In our case, the dispersion among RV Tau stars can in part be due to the proximity of several bright variables to the saturation limit. As a consequence, we decided to exclude these stars from the calculation of the PL, PW and PLC relations. To check if BL Her and W Vir stars can actually be fitted with a unique relation, we performed an independent test by fitting separately the PL(Ks, J) and PW(Ks, V) relations for each class of variables. The result of this exercise is shown in Fig. 9: for both relations, the two variable classes seem to show results that agree with each other well within 1σ, thus confirming that we can use BL Her and W Vir variables together.

Figure 5.

PL(J) and PL(Ks) relations for the T2CEPs investigated in this paper. The meaning of the symbols is the following: black filled and open circles are the BL Her and W Vir variables used in the derivation of the PL, PW and PLC relationships, respectively. Grey open and filled circles are the BL Her and W Vir variables discarded because of problems in the photometry (see the text). Grey crosses are the peculiar W Vir stars. The starred symbols represent the RV Tau variables. The size of the symbols is generally representative of the measurement errors. The solid lines represent the least-squares fit to the data shown in Table 5. We recall that RV Tau stars were not used in the calculation of the least-squares fits (see the text).

Figure 6.

PW(J, V) and PLC(J, V) for the T2CEPs investigated in this paper. Symbols are as in Fig. 5.

Figure 7.

PW(Ks, V) and PLC(Ks, V) for the T2CEPs investigated in this paper. Symbols are as in Fig. 5.

Figure 8.

PW(Ks, J) and PLC(Ks, J) for the T2CEPs investigated in this paper. Symbols are as in Fig. 5.

Figure 9.

Top panel: PL(Ks) relation calculated separately for BL Her (red) and W Vir (blue) variables. The solid and dashed lines show the best-fits ±1σ error (both for slope and ZP), respectively. Bottom panel: as above but for the PW(Ks, J − Ks) relation.

For each combination of periods, magnitudes and colours, we performed independent least-squares fits to the data, adopting equations of the form reported in Table 5. The results of the fitting procedure are shown in the same table as well as in Figs 5–8 with a solid line. Note that the equations listed in Table 5 are given in terms of absolute magnitudes since we subtracted the dereddened distance modulus (DM0, LMC) of the LMC from each equation. Thus, the absolute ZP of the relations in Table 5 can be simply obtained by using the preferred value for the DM0, LMC value.

Table 5.

Relevant relationships derived in this work. Note that all the results are in the VISTA photometric system. DM0, LMC stands for the LMC dereddened DM.

MethodRelationrms (mag)
PL(J)MJ, 0 = (−2.19 ± 0.04)log P + (17.700 ± 0.035) − DM0, LMC0.13
PL(Ks)|$M_{K_\mathrm{s,0}} = ({-}2.385\pm 0.03)\log P+(17.47\pm 0.02) -{\rm DM}_{0,\,{\rm LMC}}$|0.09
PW(J, V)MJ − 0.41(V − J) = ( − 2.290 ± 0.035)log P + (17.19 ± 0.03) − DM0, LMC0.11
PLC(J, V)MJ, 0 = (−2.40 ± 0.05)log P + (0.35 ± 0.07)(V − J)0 + (17.385 ± 0.065) − DM0, LMC0.11
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = ({-}2.49\pm 0.03)\log P+(17.33\pm 0.02)-{\rm DM}_{0,\,{\rm LMC}}$|0.08
PLC(Ks, V)|$M_{K_\mathrm{s,0}} = (-2.48\pm 0.04)\log P+(0.125\pm 0.040)(V-K_\mathrm{s})_0+(17.33\pm 0.05) -{\rm DM}_{0,\,{\rm LMC}}$|0.08
PW(Ks, J)|$M_{K_\mathrm{s}}-0.69(J-K_\mathrm{s}) = ({-}2.52\pm 0.03)\log P+(17.320\pm 0.025)-{\rm DM}_{0,\,{\rm LMC}}$|0.085
PLC(Ks, J)|$M_{K_\mathrm{s,0}} = (-2.45\pm 0.04)\log P +(0.35\pm 0.14)(J-K_\mathrm{s})_0+(17.39\pm 0.04)-{\rm DM}_{0,\,{\rm LMC}}$|0.085
MethodRelationrms (mag)
PL(J)MJ, 0 = (−2.19 ± 0.04)log P + (17.700 ± 0.035) − DM0, LMC0.13
PL(Ks)|$M_{K_\mathrm{s,0}} = ({-}2.385\pm 0.03)\log P+(17.47\pm 0.02) -{\rm DM}_{0,\,{\rm LMC}}$|0.09
PW(J, V)MJ − 0.41(V − J) = ( − 2.290 ± 0.035)log P + (17.19 ± 0.03) − DM0, LMC0.11
PLC(J, V)MJ, 0 = (−2.40 ± 0.05)log P + (0.35 ± 0.07)(V − J)0 + (17.385 ± 0.065) − DM0, LMC0.11
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = ({-}2.49\pm 0.03)\log P+(17.33\pm 0.02)-{\rm DM}_{0,\,{\rm LMC}}$|0.08
PLC(Ks, V)|$M_{K_\mathrm{s,0}} = (-2.48\pm 0.04)\log P+(0.125\pm 0.040)(V-K_\mathrm{s})_0+(17.33\pm 0.05) -{\rm DM}_{0,\,{\rm LMC}}$|0.08
PW(Ks, J)|$M_{K_\mathrm{s}}-0.69(J-K_\mathrm{s}) = ({-}2.52\pm 0.03)\log P+(17.320\pm 0.025)-{\rm DM}_{0,\,{\rm LMC}}$|0.085
PLC(Ks, J)|$M_{K_\mathrm{s,0}} = (-2.45\pm 0.04)\log P +(0.35\pm 0.14)(J-K_\mathrm{s})_0+(17.39\pm 0.04)-{\rm DM}_{0,\,{\rm LMC}}$|0.085
Table 5.

Relevant relationships derived in this work. Note that all the results are in the VISTA photometric system. DM0, LMC stands for the LMC dereddened DM.

MethodRelationrms (mag)
PL(J)MJ, 0 = (−2.19 ± 0.04)log P + (17.700 ± 0.035) − DM0, LMC0.13
PL(Ks)|$M_{K_\mathrm{s,0}} = ({-}2.385\pm 0.03)\log P+(17.47\pm 0.02) -{\rm DM}_{0,\,{\rm LMC}}$|0.09
PW(J, V)MJ − 0.41(V − J) = ( − 2.290 ± 0.035)log P + (17.19 ± 0.03) − DM0, LMC0.11
PLC(J, V)MJ, 0 = (−2.40 ± 0.05)log P + (0.35 ± 0.07)(V − J)0 + (17.385 ± 0.065) − DM0, LMC0.11
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = ({-}2.49\pm 0.03)\log P+(17.33\pm 0.02)-{\rm DM}_{0,\,{\rm LMC}}$|0.08
PLC(Ks, V)|$M_{K_\mathrm{s,0}} = (-2.48\pm 0.04)\log P+(0.125\pm 0.040)(V-K_\mathrm{s})_0+(17.33\pm 0.05) -{\rm DM}_{0,\,{\rm LMC}}$|0.08
PW(Ks, J)|$M_{K_\mathrm{s}}-0.69(J-K_\mathrm{s}) = ({-}2.52\pm 0.03)\log P+(17.320\pm 0.025)-{\rm DM}_{0,\,{\rm LMC}}$|0.085
PLC(Ks, J)|$M_{K_\mathrm{s,0}} = (-2.45\pm 0.04)\log P +(0.35\pm 0.14)(J-K_\mathrm{s})_0+(17.39\pm 0.04)-{\rm DM}_{0,\,{\rm LMC}}$|0.085
MethodRelationrms (mag)
PL(J)MJ, 0 = (−2.19 ± 0.04)log P + (17.700 ± 0.035) − DM0, LMC0.13
PL(Ks)|$M_{K_\mathrm{s,0}} = ({-}2.385\pm 0.03)\log P+(17.47\pm 0.02) -{\rm DM}_{0,\,{\rm LMC}}$|0.09
PW(J, V)MJ − 0.41(V − J) = ( − 2.290 ± 0.035)log P + (17.19 ± 0.03) − DM0, LMC0.11
PLC(J, V)MJ, 0 = (−2.40 ± 0.05)log P + (0.35 ± 0.07)(V − J)0 + (17.385 ± 0.065) − DM0, LMC0.11
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = ({-}2.49\pm 0.03)\log P+(17.33\pm 0.02)-{\rm DM}_{0,\,{\rm LMC}}$|0.08
PLC(Ks, V)|$M_{K_\mathrm{s,0}} = (-2.48\pm 0.04)\log P+(0.125\pm 0.040)(V-K_\mathrm{s})_0+(17.33\pm 0.05) -{\rm DM}_{0,\,{\rm LMC}}$|0.08
PW(Ks, J)|$M_{K_\mathrm{s}}-0.69(J-K_\mathrm{s}) = ({-}2.52\pm 0.03)\log P+(17.320\pm 0.025)-{\rm DM}_{0,\,{\rm LMC}}$|0.085
PLC(Ks, J)|$M_{K_\mathrm{s,0}} = (-2.45\pm 0.04)\log P +(0.35\pm 0.14)(J-K_\mathrm{s})_0+(17.39\pm 0.04)-{\rm DM}_{0,\,{\rm LMC}}$|0.085

In deriving the equations of Table 5, we have implicitly neglected any dependence of both PL and PW relations on the metallicity of the pulsators. This is in agreement with Matsunaga et al. (2006), who found a hardly significant dependence of the PL relations on metallicity (0.1±0.06 mag dex−1), whereas the theoretical models by Di Criscienzo et al. (2007) predict a very mild metallicity dependence ΔMag/Δ [Fe/H]∼0.04–0.06 mag dex−1 for both the PL and PW relations in the magnitudes and colours of interest. In any case, the very low dispersions of our PL and PW relations listed in Table 5 seem to suggest that the metallicity dependence, if any, should be very small. Alternatively, a small dispersion in metallicity among our sample could explain the results as well. However, since the low-metallicity dependence found by Matsunaga et al. (2006) is based on T2CEPs spanning a wide range of [Fe/H], the latter explanation is less likely.

In each figure, a number of stars are shown with grey symbols. They significantly deviate from almost all relationships discussed above. The crosses represent the stars classified by Soszyński et al. (2008) as peculiar W Vir (see column 4 in Table 2), i.e. suspected binaries that do not follow the optical PL and PW relations. We note that three of these peculiar W Vir stars, namely OGLE-LMC-T2CEP-021, 052 and 083, do not show any difference with respect to the normal W Vir stars in our PL, PW and PLC planes, and were hence included in the calculations. As for BL Her and W Vir, 15 and 4 stars of the two classes were not used in the least-squares fits because, with few exceptions, they show large scattering in almost all the relationships calculated here, and, in particular in the most reliable ones, namely the PWs and PLCs based on the Ks-band photometry. The finding charts for all these stars are displayed in Fig. 2, whereas the notes in Table 2 explain in detail the causes that led us to exclude these objects, with blending by close companions being the most common cause.

Table 5 deserves some discussion: (i) the dispersion of the PL(J) relation is, as expected, larger than for the PL(Ks); (ii) for any combination of magnitude and colour, the dispersions of PW and PLC are equal (this reflects the correctness of the reddening correction applied in this paper); (iii) the PW(J, V) and PLC(J, V) are significantly more dispersed than the PW(Ks, V)–PLC(Ks, V) and PW(Ks, J)–PLC(Ks, J) couples; (iv) the best combination of magnitude and colour (lower dispersion) appears to be the Ks,V; (v) the colour coefficients of the PW(Ks, V) and PLC(Ks, V) relations are very similar and the two relations are coincident. Similarly, for PW(J, V) and PLC(J, V), the colour coefficients are the same within the errors, whereas this is not true for the couple PW(Ks, J) – PLC(Ks, J).

4 ABSOLUTE CALIBRATION OF PL, PLC AND PW RELATIONS

In Table 5, we provided the absolute ZP for the relevant PL, PLC and PW relations as a function of the DM0, LMC. However, it is of considerable astrophysical interest to obtain an independent absolute calibration for at least some of these relations. Indeed, this would allow us to obtain an independent measure of the distance to the LMC and to the GGCs hosting T2CEP variables. To this aim, we can only rely on calibrators located close enough to the Sun to have a measurable parallax or whose distances have been estimated by Baade–Wesselink (BW) techniques (see Gautschy 1987, for a review on this method). There are only two T2CEPs whose parallaxes were measured with reasonable accuracy with the Hubble Space Telescope (HST; Benedict et al. 2011), namely κ Pav (W Vir) and VY Pyx (BL Her). For two additional BL Her variables, SW Tau and V533 Cen, as well as for κ Pav, a BW-based distance is also available (Feast et al. 2008). However, VY Pyx turned out to be a peculiar star, unusable as calibrator (see discussion in Benedict et al. 2011). As for κ Pav, the pulsational parallax estimated by Feast et al. (2008) through BW analysis is about 2σ smaller than the trigonometric parallax measured by HST and adopted here (Δπ = 0.67 ± 0.33 mas). Feast et al. (2008) investigated the possible causes of the discrepancy with respect to the Hipparcos parallax (van Leeuwen 2007), which was even larger than the HST one, but did not find any definitive explanation. A well-known potential problem related with the application of the BW technique is the uncertainty on the projection factor p (see e.g. Molinaro et al. 2012; Nardetto et al. 2014, and references therein). In their analysis, Feast et al. (2008) derived and adopted a fixed p-factor = 1.23 ± 0.03. However, several researchers suggested that the p-factor actually does depend on the period of the pulsator (see e.g. Barnes 2009; Laney & Joner 2009; Storm et al. 2011a; Nardetto et al. 2014, and references therein); hence, for example, different p-factor values should be used for BL Her and W Wir stars. Given the uncertainties on the projection factor discussed above, in the following, we will adopt the HST-based distance for κ Pav, and the ZP of the different PL, PW and PLC relations will be estimated including or not the BW-based distances for SW Tau and V533 Cen. Finally, we note that [Fe/H](κ Pav) ≈ +0.0 dex (Feast et al. 2008), i.e. at least 1 dex more metal rich than expected for typical T2CEPs. Hence, some additional uncertainty when using this object as a distance indicator can be caused by a possible metallicity effect. However, as discussed in Section 3, the metal dependence of the T2CEP PLs, if any, should be very small, and we do not expect the high metallicity of κ Pav to be an issue for our purposes. To enlarge the number of reliable calibrators, a possibility is to use the five RR Lyrae stars whose parallaxes were measured with HST by Benedict et al. (2011). Indeed, as already hypothesized by Sollima, Cacciari & Valenti (2006) and Feast et al. (2008), RR Lyrae and T2CEPs follow the same PL(Ks) relation (Caputo et al. 2004 found similar results in the optical bands). To further test this possibility, we draw in Fig. 10 the PL(Ks) and PW(Ks) relations for the T2CEPs analysed in this paper, in comparison with the location occupied in the same planes by the RR Lyrae stars in the LMC (light blue filled circles, after Borissova et al. 2009). The periods of c-type RR Lyrae stars were fundamentalized by adding δlogP = 0.127 (Bono et al. 1997a) and the magnitudes have been corrected for the metallicity term devised by Sollima et al. (2006), using the individual metallicity measurement compiled by Borissova et al. (2009). It can be seen that both the PL(Ks) and PW(Ks) relations (red lines) derived for T2CEPs in Section 5 tightly match the location of the RR Lyrae stars. On this basis, we decided to proceed using also the RR Lyrae with HST parallax to anchor the ZP of the PL(Ks) and PW(Ks, V) relations for T2CEPs. To this aim, we simply adopted the slopes of the quoted relations from Table 5, corrected for metallicity the ZP for the five RR Lyrae stars with HST parallaxes and calculated the weighted average of the results in two cases: (i) including only stars with HST parallax, namely, κ Pav and the five RR Lyrae stars; (ii) using the stars at point (i) plus the two T2CEPs with BW analysis, namely SW Tau and V533 Cen.8 The results of these procedures are outlined in Table 6 (columns 3 and 4) and in Fig. 11. For comparison, column (2) of Table 6 shows the ZPs obtained assuming DM0, LMC = 18.46 ± 0.03 mag, as derived by Ripepi et al. (2012b) from LMC CC stars. We choose the work by Ripepi et al. (2012b) as reference for CCs because (i) these authors adopted a procedure similar to the one adopted in this work; (ii) their results are in excellent agreement with the most recent and accurate literature findings (see e.g. Storm et al. 2011b; Joner & Laney 2012; Laney et al. 2012; Walker 2012; Pietrzyński et al. 2013; de Grijs et al. 2014, and references therein). An analysis of Table 6 reveals that (i) the inclusion of the two stars with BW-based distances does not change significantly the ZPs and (ii) there is a difference of at least ∼0.1 mag between the ZPs calibrated on the basis of CCs and of Galactic T2CEPs (see Section 5).

Figure 10.

PL(Ks) and PW(Ks, V) relations for the T2CEPs analysed in this paper (symbols as in Fig. 5) and for the sample of RR Lyrae stars in the LMC observed by Borissova et al. (2009, light blue filled circles). The red lines show the relationships listed in Table 5 extended till the periods of the RR Lyrae stars.

Figure 11.

Absolute PL(Ks) and PW(Ks, V) relations for the T2CEPs analysed in this paper (symbols as in Fig. 5). Light blue and yellow filled circles show the objects whose distances were measured through HST parallaxes (Benedict et al. 2011) or through BW analysis (Feast et al. 2008), respectively. The red line shows the best-fitting line to the data adopting the slope from Table 5, while ZPs were calculated using the objects with HST parallaxes alone (right-hand panels), and by adding to them the objects with BW analysis (left-hand panels). The true DMs estimated in each case for the LMC are also labelled (see Section 5).

Table 6.

PL(Ks) and PW(Ks) relations for LMC T2CEPs with the ZP calibrated as follows: (2) by imposing a DM0, LMC = 18.46±0.03 mag (from CCs in the LMC; Ripepi et al. 2012b) in Table 5; (3) by adopting Galactic T2CEP (κ Pav) and RR Lyrae variables with HST parallaxes (Benedict et al. 2011) and T2CEPs with BW distance estimates (Feast et al. 2008); (4) by adopting only calibrators with the quoted HST parallaxes. See the text for additional details.

RelationZPCCZPπ + BWZPπ
(1)(2)(3)(4)
Ks, 0 = (−2.385 ± 0.03)log P + ZP−0.99 ± 0.04−1.09 ± 0.10−1.11 ± 0.10
Ks − 0.13(V − Ks) = (−2.49 ± 0.03)log P + ZP−1.13 ± 0.04−1.24 ± 0.10−1.26 ± 0.10
RelationZPCCZPπ + BWZPπ
(1)(2)(3)(4)
Ks, 0 = (−2.385 ± 0.03)log P + ZP−0.99 ± 0.04−1.09 ± 0.10−1.11 ± 0.10
Ks − 0.13(V − Ks) = (−2.49 ± 0.03)log P + ZP−1.13 ± 0.04−1.24 ± 0.10−1.26 ± 0.10
Table 6.

PL(Ks) and PW(Ks) relations for LMC T2CEPs with the ZP calibrated as follows: (2) by imposing a DM0, LMC = 18.46±0.03 mag (from CCs in the LMC; Ripepi et al. 2012b) in Table 5; (3) by adopting Galactic T2CEP (κ Pav) and RR Lyrae variables with HST parallaxes (Benedict et al. 2011) and T2CEPs with BW distance estimates (Feast et al. 2008); (4) by adopting only calibrators with the quoted HST parallaxes. See the text for additional details.

RelationZPCCZPπ + BWZPπ
(1)(2)(3)(4)
Ks, 0 = (−2.385 ± 0.03)log P + ZP−0.99 ± 0.04−1.09 ± 0.10−1.11 ± 0.10
Ks − 0.13(V − Ks) = (−2.49 ± 0.03)log P + ZP−1.13 ± 0.04−1.24 ± 0.10−1.26 ± 0.10
RelationZPCCZPπ + BWZPπ
(1)(2)(3)(4)
Ks, 0 = (−2.385 ± 0.03)log P + ZP−0.99 ± 0.04−1.09 ± 0.10−1.11 ± 0.10
Ks − 0.13(V − Ks) = (−2.49 ± 0.03)log P + ZP−1.13 ± 0.04−1.24 ± 0.10−1.26 ± 0.10

4.1 Comparison with the literature

The relationships presented in Tables 5 and 6 can now be compared to those available in the literature. As mentioned in the introduction, Matsunaga et al. (2006, 2009) published the PL relations in the JHKs bands for BL Her and W Vir variables hosted by GGCs and the LMC, respectively. These results can be compared with ours, provided that we first transform all the J and Ks magnitudes into the VISTA system. With this aim, we transformed the Matsunaga et al. (2006) photometry from 2MASS to VISTA using the equations reported in Section 2.1. The results of Matsunaga et al. (2009) are in the IRSF system, whose J and Ks can in principle be transformed to the 2MASS system (Kato et al. 2007), and in turn, into the VISTA system. However, this is not possible for the J band, because we lack H-band photometry (see table 10 in Kato et al. 2007). We can safely overcome this problem by noting that the (J − H) colour for BL Her and W Vir stars spans a very narrow range (0.25 < (J − H) < 0.4 mag; see e.g. Matsunaga et al. 2011) so that, according to Kato et al. (2007), we can assume J(IRSF) = J(2MASS) + (0.005 ± 0.005). Finally, since our targets span the range 0.25 < (J − Ks) < 0.6 mag, we obtained J(IRSF) = J(VISTA) + (0.035 ± 0.015). As for the Ks, the transformation is straightforward: Ks(IRSF) = Ks(VISTA) + (0.014 ± 0.001).

The PL relations by Matsunaga et al. (2006, 2009), corrected as discussed above, are presented in the first four rows of Table 7. We can compare directly the PL(J) and PL(Ks) relations for the LMC (lines 2 and 4 in Table 7) with our results (lines 1 and 2 in Table 5). There is very good agreement within 1σ errors for the PL(J), whereas for the PL(Ks), the comparison is slightly worse, especially concerning the slope of the relation which is discrepant at the 1.5σ level. It is also worth mentioning that the dispersion of our relations is significantly smaller, as a result of the much better light-curve sampling of the VMC data.

Table 7.

Values for the coefficients of the PL, PW and PLC relations for BL Her and W Vir Cepheids taken from the literature. The PW functions are defined as in Table 5. The errors of ZP take into account the uncertainties in the transformation of the J and Ks photometry to the VISTA system (see the text for details).

MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)
MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)
Table 7.

Values for the coefficients of the PL, PW and PLC relations for BL Her and W Vir Cepheids taken from the literature. The PW functions are defined as in Table 5. The errors of ZP take into account the uncertainties in the transformation of the J and Ks photometry to the VISTA system (see the text for details).

MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)
MethodRelationσ (mag)
Results by Matsunaga et al. (2006, 2009) transformed to the VISTA system
PL(J) GCsMJ, 0 = (−2.23 ± 0.05)log P − (0.84 ± 0.03)0.16
PL(J) LMCJ0 = (−2.16 ± 0.04)log P + (17.76 ± 0.03)0.21
PL(Ks) GCs|$M_{K_\mathrm{s,0}} = (-2.41\pm 0.05)\log P-(1.11\pm 0.03)$|0.14
PL(Ks) LMCKs, 0 = (−2.28 ± 0.05)log P + (17.40 ± 0.03)0.21
Results by Di Criscienzo et al. (2007) transformed to the VISTA system
PL(J)MJ, 0 = (−2.29 ± 0.04)log P − (0.73 ± 0.13)
PL(Ks)|$M_{K_\mathrm{s,0}} = (-2.38\pm 0.02)\log P-(1.10\pm 0.07)$|
PW(J, V)MJ − 0.41(V − J) = ( − 2.37 ± 0.02)log P − (1.15 ± 0.08)
PW(Ks, V)|$M_{K_\mathrm{s}}-0.13(V-K_\mathrm{s}) = (-2.52\pm 0.02)\log P-(1.25\pm 0.08)$|
PW(Ks, J)Ks − 0.69(J − Ks) = ( − 2.60 ± 0.02)log P − (1.27 ± 0.08)

As for the PL(J) and PL(Ks) derived for GGCs by Matsunaga et al. (2006), their slopes are in very good agreement with ours, which suggest a ‘universal slope’ in the NIR filters, independent of the galactic environment. As for the ZPs, we can only compare them for the PL(Ks) relations (see Table 6). We found excellent agreement when the ZP is calibrated through the Galactic calibrators (irrespectively of whether stars with BW measures are included or not), whereas there is a 0.12 mag discrepancy if the ZP is calibrated by means of the LMC DM coming from CCs. This occurrence is not surprising, since Matsunaga et al. (2006) used the MV versus [Fe/H] relation for RR Lyrae variables by Gratton et al. (2003) to estimate the distances of the GGCs hosting T2CEPs and derive their PL(Ks). Hence, the two Population II calibrators, RR Lyrae and T2CEPs, give distance scales in agreement with each other.

A similar comparison can be performed with the theoretical predictions by Di Criscienzo et al. (2007), who in addition calculated the PWs for all the combinations of magnitudes and colours of interest in this work. Again, we converted the Di Criscienzo et al. (2007) results from Bessell & Brett (1988, BB) to the VISTA system. To do this, we used the transformations BB-2MASS from Carpenter (2001) and 2MASS-VISTA (see Section 2.1) and the same procedure as above to derive J(BB) = J(VISTA) + (0.04 ± 0.010) and Ks(BB) = Ks(VISTA) + (0.030 ± 0.015). Secondly, since the predicted PL and PW relations mildly depend on metallicity and adopted a mixing length parameter (α9), we have to make a choice for these parameters. We decided to evaluate the relations for α = 1.5 ± 0.5 (to encompass reasonable values for α) and [Fe/H] = −1.5 ± 0.3 dex as an average value for the LMC old population (see e.g. Borissova et al. 2004, 2006; Gratton et al. 2004; Haschke et al. 2012). The uncertainties on these parameters were taken into account in re-deriving the ZP of the predicted PL and PW relations in the VISTA system. The result of this procedure is shown in the second part of Table 7. A comparison with Table 6 shows that both for the PL(Ks) and PW(Ks, V) relations, there is excellent agreement between ours and theoretical results if the quoted relationships are calibrated with the Galactic T2CEPs and RR Lyrae, whereas there is an ∼0.1 mag discrepancy if we adopt the CC-based DM by Ripepi et al. (2012b) for the LMC to define the ZP. However, if we take into account the uncertainties, this discrepancy results formally not significant within 1σ.

5 DISCUSSION

The results reported in Section 4 allow us to discuss the distance of the LMC as estimated from NIR observation of the T2CEPs hosted in this galaxy. Table 8 (columns 3 and 4) lists the DM0, LMC calculated using the different ZP estimates for the PL(Ks) and PW(Ks, V) relations listed in Table 6. An inspection of the table reveals that the DM0, LMC calculated by means of CCs (column 2 in Table 8) and by means of the T2CEPs differ by more than ∼0.1 mag, even if, formally, there is agreement within 1σ. Since both the Ripepi et al. (2012b) calibration for CCs and that presented here for T2CEPs are based on a weighted mix of HST parallaxes and BW analysis, this discrepancy, albeit only partially significant, seems to suggest that the distance scales calibrated on pulsating stars belonging to Population I and Population II give different results (for a recent comprehensive review of the literature and a discussion about this argument, see de Grijs et al. 2014).

Table 8.

DM of the LMC estimated on the basis of the different PL(Ks) and PW(Ks) relations described in Table 6 (see the text).

Relation|${\rm DM}^{{\rm LMC}}_{{\rm CC}}$||${\rm DM}^{{\rm LMC}}_{\pi +{\rm BW}}$||${\rm DM}^{{\rm LMC}}_{\pi }$|
(1)(2)(3)(4)
PL(Ks)18.46 ± 0.0418.56 ± 0.1018.58 ± 0.10
PW(Ks, V)18.46 ± 0.0418.57 ± 0.1018.59 ± 0.10
Relation|${\rm DM}^{{\rm LMC}}_{{\rm CC}}$||${\rm DM}^{{\rm LMC}}_{\pi +{\rm BW}}$||${\rm DM}^{{\rm LMC}}_{\pi }$|
(1)(2)(3)(4)
PL(Ks)18.46 ± 0.0418.56 ± 0.1018.58 ± 0.10
PW(Ks, V)18.46 ± 0.0418.57 ± 0.1018.59 ± 0.10
Table 8.

DM of the LMC estimated on the basis of the different PL(Ks) and PW(Ks) relations described in Table 6 (see the text).

Relation|${\rm DM}^{{\rm LMC}}_{{\rm CC}}$||${\rm DM}^{{\rm LMC}}_{\pi +{\rm BW}}$||${\rm DM}^{{\rm LMC}}_{\pi }$|
(1)(2)(3)(4)
PL(Ks)18.46 ± 0.0418.56 ± 0.1018.58 ± 0.10
PW(Ks, V)18.46 ± 0.0418.57 ± 0.1018.59 ± 0.10
Relation|${\rm DM}^{{\rm LMC}}_{{\rm CC}}$||${\rm DM}^{{\rm LMC}}_{\pi +{\rm BW}}$||${\rm DM}^{{\rm LMC}}_{\pi }$|
(1)(2)(3)(4)
PL(Ks)18.46 ± 0.0418.56 ± 0.1018.58 ± 0.10
PW(Ks, V)18.46 ± 0.0418.57 ± 0.1018.59 ± 0.10

An additional application of the absolute PL(Ks) relation for T2CEPs concerns the distance estimate of GGCs hosting such kind of pulsators. Homogeneous Ks photometry, as well as period of pulsation for most of the known T2CEPs in GGCs, was published by Matsunaga et al. (2006, see their table 2). We simply inserted the period of these variables in the PL(Ks) of Table 6, and by difference with the observed magnitudes, we derived the DM for each GGC. When more than one T2CEP was present in a cluster, we averaged the resulting DMs (we excluded from the calculations the variables with periods longer than about 35 d because they are likely neither BL Her nor W Vir variables). The result of such a procedure is shown in Fig. 12 where for each GGC analysed here, we show (as a function of the metal content of the clusters) the difference between the DMs estimated on the basis of the three different calibration of the PL(Ks) listed in Table 6 and the DMs reported by Harris (1996) in his catalogue of GGC parameters. In Fig. 12, the average discrepancy in DMs decreases from top to bottom, suggesting that, even if the statistical significance is low (due to the large dispersion in ΔDM values ∼ 0.14 mag), the distance scale of GGCs, if estimated on the basis of the T2CEPs hosted in this system, is more consistent with Population II rather than Population I standard candles. This is not particularly surprising since most of the distances of GGCs in the Harris catalogue are based on RR Lyrae stars.

Figure 12.

DM differences (this work−Harris 1996) for a sample of GGCs hosting T2CEPs as a function of [Fe/H]. The dashed blue line shows the average difference. The solid red line shows the line with zero difference. The DMs for the GGCs were estimated adopting the PL(Ks) for T2CEPs and ZP determined as follows: (top panel) on the basis of the DM0, LMC measured by Ripepi et al. (2012b) using LMC CC with VMC NIR data; (middle panel) by means of a sample of Galactic T2CEPs whose distances were measured both through HST parallaxes (Benedict et al. 2011) and BW technique (Feast et al. 2008); (bottom panel) as in the previous case, but using objects with HST parallaxes only.

6 SUMMARY

In the context of the VMC survey, this paper shows the first results concerning T2CEPs in the LMC. We presented J and Ks light curves for 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables, corresponding to 63, 63 (75 per cent) and 61 per cent of the known LMC populations of the three variable classes, respectively. The Ks-band light curves are almost always well sampled, allowing us to obtain accurate spline fits to the data and, in turn, precise intensity-averaged 〈Ks〉 magnitudes for 120 variables in our sample. As for the J band, only about 1/3 of the J light curves were sufficiently sampled to allow a satisfactory spline fit to the data, and for the remaining 2/3 of pulsators, the intensity-averaged 〈J〉 magnitudes were derived using the Ks-band spline fits as templates. On the basis of this data set for BL Her and W Vir, complemented by the 〈V〉 magnitudes from the OGLE survey, we have built for the first time (apart from PL(J) and PL(Ks)) a variety of empirical PL, PLC and PW relationships, for any combination of the V, J, Ks filters. Several outliers were removed from the calculation of these relations, and we provided an explanation for the presence of these divergent objects. All the quoted PL, PLC and PW relationships were calibrated in terms of the LMC distance. However, the availability of absolute MV and |$M_{K_\mathrm{s}}$| for a small sample of RR Lyrae and T2CEPs variables based on HST parallaxes allowed us to obtain an independent absolute calibration of the PL(Ks) and PW(Ks, V) relationships [the PLC(Ks, V) is identical to the PW(Ks, V)]. If applied to the LMC and to the GGCs hosting T2CEPs, these relations give DMs which are around 0.1 mag longer than those estimated for CCs by means of HST parallaxes and BW techniques. However, if we take into account the uncertainties at their face value, the quoted discrepancy is formally not significant within 1σ.

We wish to thank our referee, Dr C. D. Laney, for his helpful and competent review of the manuscript. VR warmly thanks Roberto Molinaro for providing the program for the spline interpolation of the light curves.

Partial financial support for this work was provided by PRIN-INAF 2011 (PI: Marcella Marconi) and PRIN MIUR 2011 (PI: F. Matteucci). We thank the UK's VISTA Data Flow System comprising the VISTA pipeline at the Cambridge Astronomy Survey Unit (CASU) and the VISTA Science Archive at Wide Field Astronomy Unit (Edinburgh) (WFAU) for providing calibrated data products supported by the STFC. This work was partially supported by the Gaia Research for European Astronomy Training (GREAT-ITN) Marie Curie network, funded through the European Union Seventh Framework Programme ([FP7/2007- 1312 2013] under grant agreement no. 264895). RdG acknowledges research support from the National Natural Science Foundation of China (NSFC) through grant 11373010. This work was partially supported by the Argentinian institutions CONICET and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

Based on observations made with VISTA at ESO under programme ID 179.B-2003.

1

Visible and Infrared Survey Telescope for Astronomy.

2

Data available at http://ogle.astrouw.edu.pl

3

Soszyński et al. (2012) also report the discovery of one yellow semiregular variable (SRd). Since this class of variables is not considered in this paper, we ignore this object in the present work.

5

A comparison of Fig. A1 (Ks light curves) and A3 (J light curves for stars possessing sufficient data points to be analysed independently from the Ks band) shows that at present level of precision, the light curves in J and Ks are sufficiently similar to allow us using the Ks spline fits as templates.

7

The coefficients we used are suited for the 2MASS system, to which the VISTA system is tied (see Section 2.1).

8

The uncertainties on the DM of these two objects were obtained by summing the uncertainties reported in table 4 of Feast et al. (2008).

9

α = l/Hp is the ratio between the mean free path of a convective element (l) and the pressure scale height (Hp). Varying this parameter strongly affects the properties of a star's outer envelope such as its radius and effective temperature.

REFERENCES

Barnes
T. G.
Guzik
J. A.
Bradley
P. A.
AIP Conf. Proc. Vol. 1170, Stellar Pulsation: Challenges for Theory and Observation
2009
New York
Am. Inst. Phys.
pg. 
3
 
Bekki
K.
Chiba
M.
MNRAS
2007
, vol. 
381
 pg. 
L16
 
Benedict
G. F.
, et al. 
AJ
2011
, vol. 
142
 pg. 
187
 
Bessell
M. S.
Brett
J. M.
PASP
1988
, vol. 
100
 pg. 
1134
 
Bono
G.
Caputo
F.
Castellani
V.
Marconi
M.
A&AS
1997a
, vol. 
121
 pg. 
327
 
Bono
G.
Caputo
F.
Santolamazza
P.
A&A
1997b
, vol. 
317
 pg. 
171
 
Borissova
J.
Minniti
D.
Rejkuba
M.
Alves
D.
Cook
K. H.
Freeman
K. C.
A&A
2004
, vol. 
423
 pg. 
97
 
Borissova
J.
Minniti
D.
Rejkuba
M.
Alves
D.
A&A
2006
, vol. 
460
 pg. 
459
 
Borissova
J.
Rejkuba
M.
Minniti
D.
Catelan
M.
Ivanov
V. D.
A&A
2009
, vol. 
502
 pg. 
505
 
Brocato
E.
Caputo
F.
Castellani
V.
Marconi
M.
Musella
I.
AJ
2004
, vol. 
128
 pg. 
1597
 
Caputo
F.
A&AR
1998
, vol. 
9
 pg. 
33
 
Caputo
F.
Castellani
V.
Degl'Innocenti
S.
Fiorentino
G.
Marconi
M.
A&A
2004
, vol. 
424
 pg. 
927
 
Cardelli
J. A.
Clayton
G. C.
Mathis
J. S.
ApJ
1989
, vol. 
345
 pg. 
245
 
Carpenter
J. M.
AJ
2001
, vol. 
121
 pg. 
2851
 
Cioni
M.-R. L.
Clementini
G.
Girardi
L.
, et al. 
A&A
2011
, vol. 
527
 pg. 
116
 
Clementini
G.
Gratton
R.
Bragaglia
A.
Carretta
E.
Di Fabrizio
L.
Maio
M.
AJ
2003
, vol. 
125
 pg. 
1309
 
Cross
N. J. G.
, et al. 
A&A
2012
, vol. 
548
 pg. 
A119
 
Dalton
G. B.
, et al. 
McLean
I. S.
Iye
M.
Proc. SPIE Conf. Ser. Vol. 6269, Ground-Based and Airborne Instrumentation for Astronomy
2006
Bellingham
SPIE
pg. 
62690X
 
de Grijs
R.
Wicker
J. E.
Bono
G.
AJ
2014
, vol. 
147
 pg. 
122
 
Di Criscienzo
M.
Caputo
F.
Marconi
M.
Cassisi
S.
A&A
2007
, vol. 
471
 pg. 
893
 
Emerson
J. P.
, et al. 
SPIE
2004
, vol. 
5493
 pg. 
401
 
Emerson
J. P.
McPherson
A.
Sutherland
W.
The Messenger
2006
, vol. 
126
 pg. 
41
 
Feast
M. W.
Proc. Int. Conf., Variable Stars, the Galactic halo and Galaxy Formation
2010
Russia
Sternberg Astronomical Institute of Moscow University
pg. 
45
 
Feast
M. W.
Laney
C. D.
Kinman
T. D.
van Leeuwen
F.
Whitelock
P. A.
MNRAS
2008
, vol. 
386
 pg. 
2115
 
For
B.-Q.
Staveley-Smith
L.
McClure-Griffiths
N. M.
ApJ
2013
, vol. 
764
 pg. 
74
 
Freedman
W. L.
, et al. 
ApJ
2001
, vol. 
553
 pg. 
47
 
Gao
J.
Jiang
B. W.
Li
A.
Xue
M. Y.
ApJ
2013
, vol. 
776
 pg. 
7
 
Gautschy
A.
Vistas Astron.
1987
, vol. 
30
 pg. 
197
 
Gingold
R. A.
Mem. Soc. Astron. Ital.
1985
, vol. 
56
 pg. 
169
 
Gratton
R. G.
Bragaglia
A.
Carretta
E.
Clementini
G.
Desidera
S.
Grundahl
F.
Lucatello
S.
A&A
2003
, vol. 
408
 pg. 
529
 
Gratton
R. G.
Bragaglia
A.
Clementini
G.
Carretta
E.
Di Fabrizio
L.
Maio
M.
Taribello
E.
A&A
2004
, vol. 
421
 pg. 
937
 
Groenewegen
M. A. T.
Udalski
A.
Bono
G.
A&A
2008
, vol. 
481
 pg. 
441
 
Harris
H. C.
AJ
1985
, vol. 
90
 pg. 
756
 
Harris
W. E.
AJ
1996
, vol. 
112
 pg. 
1487
 
Harris
J.
Zaritsky
D.
AJ
2004
, vol. 
127
 pg. 
1531
 
Harris
J.
Zaritsky
D.
AJ
2009
, vol. 
138
 pg. 
1243
 
Haschke
R.
Grebel
E. K.
Duffau
S.
AJ
2011
, vol. 
141
 pg. 
158
 
Haschke
R.
Grebel
E. K.
Duffau
S.
Jin
S.
AJ
2012
, vol. 
143
 pg. 
48
 
Irwin
M. J.
UKIRT Newsl.
2009
, vol. 
25
 pg. 
15
 
Irwin
M. J.
, et al. 
Proc. SPIE
2004
, vol. 
5493
 pg. 
411
 
Joner
M. D.
Laney
C. D.
AAS/Division of Dynamical Astronomy Meeting
2012
, vol. 
43
 pg. 
#09.02
 
Kato
D.
, et al. 
PASJ
2007
, vol. 
59
 pg. 
615
 
Kubiak
M.
Udalski
A.
Acta Astron.
2003
, vol. 
53
 pg. 
117
 
Laney
C. D.
Joner
M. D.
Guzik
J. A.
Bradley
P. A.
AIP Conf. Proc. Vol. 1170, Stellar Pulsation: Challenges for Theory and Observation
2009
New York
Am. Inst. Phys.
pg. 
93
 
Laney
C. D.
Joner
M. D.
Pietrzyński
G.
MNRAS
2012
, vol. 
419
 pg. 
1637
 
Madore
B. F.
ApJ
1982
, vol. 
253
 pg. 
575
 
Madore
B. F.
Freedman
W.
PASP
1991
, vol. 
103
 pg. 
933
 
Madore
B. F.
Freedman
W. L.
ApJ
2012
, vol. 
744
 pg. 
132
 
Marconi
M.
Di Criscienzo
M.
A&A
2007
, vol. 
467
 pg. 
223
 
Matsunaga
N.
, et al. 
MNRAS
2006
, vol. 
370
 pg. 
1979
 
Matsunaga
N.
Feast
M. W.
Menzies
J. W.
MNRAS
2009
, vol. 
397
 pg. 
933
 
Matsunaga
N.
Feast
M. W.
Soszyński
I.
MNRAS
2011
, vol. 
413
 pg. 
223
 
Matteucci
A.
Ripepi
V.
Brocato
E.
Castellani
V.
A&A
2002
, vol. 
387
 pg. 
861
 
Molinaro
R.
, et al. 
ApJ
2012
, vol. 
748
 pg. 
69
 
Moretti
M. I.
Clementini
G.
Muraveva
T.
, et al. 
MNRAS
2014
, vol. 
437
 pg. 
2702
 
Muller
E.
Stanimirović
S.
Rosolowsky
E.
Staveley-Smith
L.
ApJ
2004
, vol. 
616
 pg. 
845
 
Nardetto
N.
Storm
J.
Gieren
W.
Pietrzyński
G.
Poretti
E.
Guzik
J. A.
Chaplin
W. J.
Handler
G.
Pigulski
A.
Proc. IAU Symp. 301, Precision Asteroseismology
2014
Cambridge
Cambridge Univ. Press
pg. 
145
 
Neilson
H. R.
Langer
N.
A&A
2012
, vol. 
537
 pg. 
26
 
Nemec
J. M.
Nemec
A. F. L.
Lutz
T. E.
AJ
1994
, vol. 
108
 pg. 
222
 
Pietrzyński
G.
, et al. 
Nature
2013
, vol. 
495
 pg. 
76
 
Pritzl
B. J.
Smith
H. A.
Stetson
P. B.
Catelan
M.
Sweigart
A. V.
Layden
A. C.
Rich
R. M.
AJ
2003
, vol. 
126
 pg. 
1381
 
Putman
M. E.
, et al. 
Nature
1998
, vol. 
394
 pg. 
752
 
Riess
A.
, et al. 
ApJ
2011
, vol. 
730
 pg. 
119
 
Ripepi
V.
Moretti
M. I.
Clementini
G.
Marconi
M.
Cioni
M.-R. L.
Marquette
J. B.
Tisserand
P.
Ap&SS
2012a
, vol. 
341
 pg. 
51
 
Ripepi
V.
, et al. 
MNRAS
2012b
, vol. 
424
 pg. 
1807
 
Ripepi
V.
, et al. 
MNRAS
2014a
, vol. 
437
 pg. 
2307
 
Ripepi
V.
, et al. 
MNRAS
2014b
, vol. 
442
 pg. 
1897
 
Rubele
S.
, et al. 
A&A
2012
, vol. 
537
 pg. 
A106
 
Sandage
A.
Tammann
G. A.
ARA&A
2006
, vol. 
44
 pg. 
93
 
Skrutskie
M. F.
, et al. 
AJ
2006
, vol. 
131
 pg. 
1163
 
Sollima
A.
Cacciari
C.
Valenti
E.
MNRAS
2006
, vol. 
372
 pg. 
1675
 
Soszyński
I.
, et al. 
Acta Astron.
2008
, vol. 
58
 pg. 
293
 
Soszyński
I.
, et al. 
Acta Astron.
2012
, vol. 
62
 pg. 
219
 
Stanimirović
S.
Staveley-Smith
L.
Jones
P. A.
ApJ
2004
, vol. 
604
 pg. 
176
 
Storm
J.
, et al. 
A&A
2011a
, vol. 
534
 pg. 
A94
 
Storm
J.
Gieren
W.
Fouqué
P.
Barnes
T. G.
Soszyński
I.
Pietrzyński
G.
Nardetto
N.
Queloz
D.
A&A
2011b
, vol. 
534
 pg. 
A95
 
Subramanian
S.
Subramaniam
A.
A&A
2013
, vol. 
552
 pg. 
A144
 
Udalski
A.
Szymanski
M.
Kaluzny
J.
Kubiak
M.
Mateo
M.
Acta Astron.
1992
, vol. 
42
 pg. 
253
 
van der Marel
R. P.
Cioni
M.-R. L.
AJ
2001
, vol. 
122
 pg. 
1807
 
van Leeuwen
F.
Astrophysics and Space Science Library, Vol. 350, Hipparcos, the New Reduction of the Raw Data
2007
Berlin
Springer
Venzmer
M. S.
Kerp
J.
Kalberla
P. M. W.
A&A
2012
, vol. 
547
 pg. 
A12
 
Walker
A.
Ap&SS
2012
, vol. 
341
 pg. 
43
 
Wallerstein
G.
PASP
2002
, vol. 
114
 pg. 
689
 
Wallerstein
G.
Cox
A. N.
PASP
1984
, vol. 
96
 pg. 
677
 

APPENDIX A: LIGHT CURVES

Figure A1.

Ks-band light curves for T2CEPs with usable data discussed in this paper. Stars are displayed in order of increasing period. Filled and open circles represent phase points used or not used in the fitting procedure, respectively. Solid lines represent best-fitting splines to the data (see the text). In each panel, we report OGLE's identification number and period.

Figure A1

– continued

Figure A1

– continued

Figure A1

– continued

Figure A1

– continued

Figure A2.

Ks-band light curves for problematic stars (see the text).

Figure A3.

J-band light curves for T2CEP stars with a sufficient number of epochs to perform the spline fit to the data. Stars are displayed in order of increasing period. Solid lines represent spline best fits to the data (see the text). In each panel, we report OGLE's identification number and period.

Figure A3

– continued

Figure A4.

J-band light curves for T2CEP stars not possessing a sufficient number of epochs to perform the spline fit to the data and for which template fitting was used (see the text). Stars are displayed in order of increasing period. Solid lines represent spline best fits to the data (see the text). In each panel, we report OGLE's identification number and period.

Figure A4

– continued

Figure A4

– continued

Figure A4

– continued

Figure A5.

Light curves for stars showing problems in the J and Ks bands (see the text).

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table 3.J and Ks time-series photometry for the T2CEPs investigated in this paper (Supplementary Data).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supplementary data