A Consideration for the Non-linear Resistance Caused by Constriction Current through Two Dimensional Bridge on a Copper Printed Circuit Board

Isao MINOWA

Publication
IEICE TRANSACTIONS on Electronics   Vol.E90-C    No.7    pp.1417-1420
Publication Date: 2007/07/01
Online ISSN: 1745-1353
DOI: 10.1093/ietele/e90-c.7.1417
Print ISSN: 0916-8516
Type of Manuscript: Special Section PAPER (Special Section on Recent Development of Electromechanical Devices (Selected Papers from ICEC2006))
Category: Contact Phenomena
Keyword: 
narrow path of contact area,  constriction resistance,  heat diffusion,  non-linear distortion voltage,  

Full Text: PDF(190.4KB)>>
Buy this Article



Summary: 
Contact resistance is caused by constriction resistance and film resistance through contact layers. It is well known that a surface film causes non-linear voltage and current characteristics. The origin of non-linearity is caused by tunneling electron through thin insulation barrier or jumping over the thick barrier (Shottky barrier) on the contact surface. In this paper, a new idea causing nonlinear property by only current constriction which flows through very small contact spot area, if there is no film layer, is proposed by the two dimensional contact model. The contact model, used in this paper, is a two dimensional type narrow path of contact area (short bridge) made by thin copper foil of 0.035 mm on a glass epoxy resin board. The contact part is made by scraping with an electric drill as a single bridge shape of 0.1 mm wide and 0.3 mm long on the centre of a board (100 mm100 mm). The 3rd harmonic distortion voltage was measured by using a Component Linearity Test Equipment (Type CLT1 made by Radiometer Electronics Company) which the system supplies a pure sine wave current of 10 kHz and detects a distortion voltage of 30 kHz by a narrow band pass filter circuit. The sensitivity of the Component Linearity Test Equipment (CLT1) is under a 10-9 volt. Four bridge samples were examined for the comparison of nonlinear distortion voltage. The distortion voltage of a sample (A) (0.1 mm wide, 0.3 mm long) is too larger than the one of the sample (B) (0.2 mm wide, 0.3 mm long) at the same applied voltage which resistance is not so different each other. It seems that current constriction to the spot (A) may heat up higher and cool down lower than (B). It would be also guessed that the power dissipation of 20 kHz cause temperature oscillation of 20 kHz, then it causes a component of contact resistance of 20 kHz, and therefore the product of 10 kHz current and 20 kHz resistance component cause 30 kHz component distortion voltage.