Abstract

We report the discovery of the transiting exoplanets WASP-95b, WASP-96b, WASP-97b, WASP-98b, WASP-99b, WASP-100b and WASP-101b. All are hot Jupiters with orbital periods in the range 2.1–5.7 d, masses of 0.5–2.8 MJup and radii of 1.1–1.4 RJup. The orbits of all the planets are compatible with zero eccentricity. WASP-99b produces the shallowest transit yet found by WASP-South, at 0.4 per cent.

The host stars are of spectral type F2–G8. Five have metallicities of [Fe/H] from −0.03 to +0.23, while WASP-98 has a metallicity of −0.60, exceptionally low for a star with a transiting exoplanet. Five of the host stars are brighter than V = 10.8, which significantly extends the number of bright transiting systems available for follow-up studies. WASP-95 shows a possible rotational modulation at a period of 20.7 d. We discuss the completeness of WASP survey techniques by comparing to the HATnet project.

1 INTRODUCTION

The WASP-South survey has dominated the discovery of transiting hot-Jupiter exoplanets in the Southern hemisphere. WASP-South is well matched to the capabilities of the Euler/CORALIE spectrograph and the robotic TRAPPIST telescope, with the combination proving efficient for discovering transiting exoplanets around stars of V = 9–13.

WASP-South (see Hellier et al. 2011a) has now been running nearly continuously for seven years. Approximately 1000 candidates have now been observed with Euler/CORALIE, while TRAPPIST (see Jehin et al. 2011) has observed 1000 light curves of WASP candidates and planets. Here we present new WASP-South planets which take WASP numbering above 100.

Since WASP host stars are generally brighter than host stars of Kepler exoplanets, ongoing WASP-South discoveries are important for detailed study of exoplanets and will be prime targets for future missions such as CHEOPS and JWST, and proposed missions such as EChO and FINESSE.

2 OBSERVATIONS

The observational and analysis techniques used here are the same as in recent WASP discovery papers (e.g. Hellier et al. 2012), and thus are described briefly. For detailed accounts see the earlier papers including Pollacco et al. (2006, 2008) and Collier Cameron et al. (2007a).

In outline, WASP-South surveys the visible sky each clear night using an array of 200 mm f/1.8 lenses and a cadence of ∼10 min. Transit searching of accumulated light curves leads to candidates that are passed to TRAPPIST (a robotic 0.6-m photometric telescope, which can resolve blends and check that the candidate transits are planet-like), and to the 1.2-m Euler/CORALIE spectrograph [for radial-velocity (RV) observations]. About 1 in 12 candidates turns out to be a planet. Higher quality transit light curves are then obtained with TRAPPIST and with EulerCAM (Lendl et al. 2012). A list of the observations reported here is given in Table 1 while the CORALIE radial velocities are listed in Table A1 (available as Supporting Information).

Table 1.

Observations.

FacilityDate
WASP-95:
WASP-South2010 May–2011 Nov23 200 points
Euler/CORALIE2012 Jul–2013 May14 radial velocities
TRAPPIST2012 Sep 14|$z$| band
EulerCAM2012 Sep 16Gunn r filter
TRAPPIST2012 Sep 27|$z$| band
EulerCAM2013 May 23Gunn r filter
EulerCAM2013 Aug 01Gunn r filter
WASP-96:
WASP-South2010 Jun–2011 Dec13 100 points
Euler/CORALIE2011 Oct–2012 Oct21 radial velocities
TRAPPIST2011 Nov 11Blue-block filter
EulerCAM2012 Jul 01Gunn r filter
TRAPPIST2012 Dec 11Blue-block filter
EulerCAM2013 Jun 29Gunn r filter
WASP-97:
WASP-South2010 Jun–2012 Jan23 900 points
Euler/CORALIE2012 Sep–2012 Nov12 radial velocities
EulerCAM2012 Nov 23Gunn r filter
TRAPPIST2012 Nov 23|$z$|-band
EulerCAM2013 Jul 11Gunn r filter
EulerCAM2013 Aug 09Gunn r filter
TRAPPIST2013 Aug 09I + |$z$| filter
WASP-98:
WASP-South2006 Aug–2012 Jan12 700 points
Euler/CORALIE2011 Nov–2012 Nov15 radial velocities
EulerCAM2012 Oct 28IC band
TRAPPIST2012 Oct 28Blue-block filter
EulerCAM2012 Oct 31IC band
TRAPPIST2012 Nov 03Blue-block filter
TRAPPIST2013 Aug 29Blue-block filter
EulerCAM2013 Sep 07IC band
WASP-99:
WASP-South2010 Jul–2012 Jan9000 points
Euler/CORALIE2012 Feb–2013 Jan20 radial velocities
EulerCAM2012 Nov 21Gunn r filter
WASP-100:
WASP-South2010 Aug–2012 Jan13 500 points
Euler/CORALIE2012 Sep–2013 Mar19 radial velocities
TRAPPIST2012 Dec 04I + |$z$| filter
TRAPPIST2013 Jan 10I + |$z$| filter
TRAPPIST2013 Sep 29|$z$| filter
WASP-101:
WASP-South2009 Jan–2012 Mar16 100 points
Euler/CORALIE2011 Jan–2013 Jun21 radial velocities
TRAPPIST2012 Jan 11|$z$| band
TRAPPIST2012 Jan 22|$z$| band
TRAPPIST2012 Jan 29|$z$| band
TRAPPIST2012 Mar 05|$z$| band
EulerCAM2012 Dec 06Gunn r filter
TRAPPIST2013 Feb 23|$z$| band
FacilityDate
WASP-95:
WASP-South2010 May–2011 Nov23 200 points
Euler/CORALIE2012 Jul–2013 May14 radial velocities
TRAPPIST2012 Sep 14|$z$| band
EulerCAM2012 Sep 16Gunn r filter
TRAPPIST2012 Sep 27|$z$| band
EulerCAM2013 May 23Gunn r filter
EulerCAM2013 Aug 01Gunn r filter
WASP-96:
WASP-South2010 Jun–2011 Dec13 100 points
Euler/CORALIE2011 Oct–2012 Oct21 radial velocities
TRAPPIST2011 Nov 11Blue-block filter
EulerCAM2012 Jul 01Gunn r filter
TRAPPIST2012 Dec 11Blue-block filter
EulerCAM2013 Jun 29Gunn r filter
WASP-97:
WASP-South2010 Jun–2012 Jan23 900 points
Euler/CORALIE2012 Sep–2012 Nov12 radial velocities
EulerCAM2012 Nov 23Gunn r filter
TRAPPIST2012 Nov 23|$z$|-band
EulerCAM2013 Jul 11Gunn r filter
EulerCAM2013 Aug 09Gunn r filter
TRAPPIST2013 Aug 09I + |$z$| filter
WASP-98:
WASP-South2006 Aug–2012 Jan12 700 points
Euler/CORALIE2011 Nov–2012 Nov15 radial velocities
EulerCAM2012 Oct 28IC band
TRAPPIST2012 Oct 28Blue-block filter
EulerCAM2012 Oct 31IC band
TRAPPIST2012 Nov 03Blue-block filter
TRAPPIST2013 Aug 29Blue-block filter
EulerCAM2013 Sep 07IC band
WASP-99:
WASP-South2010 Jul–2012 Jan9000 points
Euler/CORALIE2012 Feb–2013 Jan20 radial velocities
EulerCAM2012 Nov 21Gunn r filter
WASP-100:
WASP-South2010 Aug–2012 Jan13 500 points
Euler/CORALIE2012 Sep–2013 Mar19 radial velocities
TRAPPIST2012 Dec 04I + |$z$| filter
TRAPPIST2013 Jan 10I + |$z$| filter
TRAPPIST2013 Sep 29|$z$| filter
WASP-101:
WASP-South2009 Jan–2012 Mar16 100 points
Euler/CORALIE2011 Jan–2013 Jun21 radial velocities
TRAPPIST2012 Jan 11|$z$| band
TRAPPIST2012 Jan 22|$z$| band
TRAPPIST2012 Jan 29|$z$| band
TRAPPIST2012 Mar 05|$z$| band
EulerCAM2012 Dec 06Gunn r filter
TRAPPIST2013 Feb 23|$z$| band
Table 1.

Observations.

FacilityDate
WASP-95:
WASP-South2010 May–2011 Nov23 200 points
Euler/CORALIE2012 Jul–2013 May14 radial velocities
TRAPPIST2012 Sep 14|$z$| band
EulerCAM2012 Sep 16Gunn r filter
TRAPPIST2012 Sep 27|$z$| band
EulerCAM2013 May 23Gunn r filter
EulerCAM2013 Aug 01Gunn r filter
WASP-96:
WASP-South2010 Jun–2011 Dec13 100 points
Euler/CORALIE2011 Oct–2012 Oct21 radial velocities
TRAPPIST2011 Nov 11Blue-block filter
EulerCAM2012 Jul 01Gunn r filter
TRAPPIST2012 Dec 11Blue-block filter
EulerCAM2013 Jun 29Gunn r filter
WASP-97:
WASP-South2010 Jun–2012 Jan23 900 points
Euler/CORALIE2012 Sep–2012 Nov12 radial velocities
EulerCAM2012 Nov 23Gunn r filter
TRAPPIST2012 Nov 23|$z$|-band
EulerCAM2013 Jul 11Gunn r filter
EulerCAM2013 Aug 09Gunn r filter
TRAPPIST2013 Aug 09I + |$z$| filter
WASP-98:
WASP-South2006 Aug–2012 Jan12 700 points
Euler/CORALIE2011 Nov–2012 Nov15 radial velocities
EulerCAM2012 Oct 28IC band
TRAPPIST2012 Oct 28Blue-block filter
EulerCAM2012 Oct 31IC band
TRAPPIST2012 Nov 03Blue-block filter
TRAPPIST2013 Aug 29Blue-block filter
EulerCAM2013 Sep 07IC band
WASP-99:
WASP-South2010 Jul–2012 Jan9000 points
Euler/CORALIE2012 Feb–2013 Jan20 radial velocities
EulerCAM2012 Nov 21Gunn r filter
WASP-100:
WASP-South2010 Aug–2012 Jan13 500 points
Euler/CORALIE2012 Sep–2013 Mar19 radial velocities
TRAPPIST2012 Dec 04I + |$z$| filter
TRAPPIST2013 Jan 10I + |$z$| filter
TRAPPIST2013 Sep 29|$z$| filter
WASP-101:
WASP-South2009 Jan–2012 Mar16 100 points
Euler/CORALIE2011 Jan–2013 Jun21 radial velocities
TRAPPIST2012 Jan 11|$z$| band
TRAPPIST2012 Jan 22|$z$| band
TRAPPIST2012 Jan 29|$z$| band
TRAPPIST2012 Mar 05|$z$| band
EulerCAM2012 Dec 06Gunn r filter
TRAPPIST2013 Feb 23|$z$| band
FacilityDate
WASP-95:
WASP-South2010 May–2011 Nov23 200 points
Euler/CORALIE2012 Jul–2013 May14 radial velocities
TRAPPIST2012 Sep 14|$z$| band
EulerCAM2012 Sep 16Gunn r filter
TRAPPIST2012 Sep 27|$z$| band
EulerCAM2013 May 23Gunn r filter
EulerCAM2013 Aug 01Gunn r filter
WASP-96:
WASP-South2010 Jun–2011 Dec13 100 points
Euler/CORALIE2011 Oct–2012 Oct21 radial velocities
TRAPPIST2011 Nov 11Blue-block filter
EulerCAM2012 Jul 01Gunn r filter
TRAPPIST2012 Dec 11Blue-block filter
EulerCAM2013 Jun 29Gunn r filter
WASP-97:
WASP-South2010 Jun–2012 Jan23 900 points
Euler/CORALIE2012 Sep–2012 Nov12 radial velocities
EulerCAM2012 Nov 23Gunn r filter
TRAPPIST2012 Nov 23|$z$|-band
EulerCAM2013 Jul 11Gunn r filter
EulerCAM2013 Aug 09Gunn r filter
TRAPPIST2013 Aug 09I + |$z$| filter
WASP-98:
WASP-South2006 Aug–2012 Jan12 700 points
Euler/CORALIE2011 Nov–2012 Nov15 radial velocities
EulerCAM2012 Oct 28IC band
TRAPPIST2012 Oct 28Blue-block filter
EulerCAM2012 Oct 31IC band
TRAPPIST2012 Nov 03Blue-block filter
TRAPPIST2013 Aug 29Blue-block filter
EulerCAM2013 Sep 07IC band
WASP-99:
WASP-South2010 Jul–2012 Jan9000 points
Euler/CORALIE2012 Feb–2013 Jan20 radial velocities
EulerCAM2012 Nov 21Gunn r filter
WASP-100:
WASP-South2010 Aug–2012 Jan13 500 points
Euler/CORALIE2012 Sep–2013 Mar19 radial velocities
TRAPPIST2012 Dec 04I + |$z$| filter
TRAPPIST2013 Jan 10I + |$z$| filter
TRAPPIST2013 Sep 29|$z$| filter
WASP-101:
WASP-South2009 Jan–2012 Mar16 100 points
Euler/CORALIE2011 Jan–2013 Jun21 radial velocities
TRAPPIST2012 Jan 11|$z$| band
TRAPPIST2012 Jan 22|$z$| band
TRAPPIST2012 Jan 29|$z$| band
TRAPPIST2012 Mar 05|$z$| band
EulerCAM2012 Dec 06Gunn r filter
TRAPPIST2013 Feb 23|$z$| band

3 THE HOST STARS

For each star the individual CORALIE spectra were co-added to produce a single spectrum with typical S/N of ∼100:1 (though the fainter WASP-98, V = 13, had an S/N of only 40:1). Our methods for spectral analysis are described in Doyle et al. (2013). The excitation balance of the Fe i lines was used to determine the effective temperature (Teff), and spectral type was estimated from Teff using the table in Gray (2008). The surface gravity (log g) was determined from the ionization balance of Fe i and Fe ii. The Ca i line at 6439Å and the Na i D lines were also used as log g diagnostics. The metallicity was determined from equivalent width measurements of several unblended lines.

The projected stellar rotation velocity (|$v$|sin i) was determined by fitting the profiles of several unblended Fe i lines. An instrumental full width at half-maximum of 0.11 ± 0.01 Å was determined from the telluric lines around 6300 Å.

For age estimates we use the lithium abundance and the Sestito & Randlich (2005) calibration. We also give a gyrochronological age, from the measured |$v$|sin i and assuming that the star's spin is perpendicular to us, so that this is the true equatorial speed. This is then combined with the stellar radius to give a rotational period, to compare with the results of Barnes (2007). The results for each star are listed in the Tables 2–8. These values are presented for information, and for comparison with the evolutionary tracks (Section 4), but should be treated with caution.

Table 2.

System parameters for WASP-95.

1SWASP J222949.73−480011.0
2MASS 22294972−4800111
RA = 22h29m49|${^{\rm s}_{.}}$|73, Dec. = −48°00′11|${^{\prime\prime}_{.}}$|0 (J2000)
V mag = 10.1
Rotational modulation 2 mmag at ∼20.7 d
pm (RA) 94.1 ± 0.9 (Dec.) −8.5 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG2
Teff (K)5830 ± 140
log g4.36 ± 0.07
|$v$| sin I (km s−1)3.1 ± 0.6
[Fe/H]+0.14 ± 0.16
log A(Li)<0.2
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)|$2.4^{+1.7}_{-1.0}$|
Parameters from MCMC analysis.
P (d)2.184 6730 ± 0.000 0014
Tc (HJD) (UTC)245 6338.458 51 ± 0.000 24
T14 (d)0.116 ± 0.001
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0105 ± 0.0003
b0.19 |$^{+0.21}_{-0.13}$|
i (°)88.4 |$^{+1.2}_{-2.1}$|
K1 (km s−1)0.1757 ± 0.0017
γ (km s−1)6.2845 ± 0.0004
e0 (adopted) (<0.04 at 3σ)
M* (M)1.11 ± 0.09
R* (R)1.13 |$^{+0.08}_{-0.04}$|
log g* (cgs)4.38 |$^{+0.02}_{-0.04}$|
ρ*)0.78 |$^{+0.04}_{-0.13}$|
Teff (K)5630 ± 130
MP (MJup)1.13 |$^{+0.1}_{-0.04}$|
RP (RJup)1.21 ± 0.06
log gP (cgs)3.34 |$^{+0.02}_{-0.07}$|
ρPJ)0.85 |$^{+0..07}_{-0.2}$|
a (au)0.034 16 ± 0.000 83
TP, A = 0 (K)1570 ± 50
1SWASP J222949.73−480011.0
2MASS 22294972−4800111
RA = 22h29m49|${^{\rm s}_{.}}$|73, Dec. = −48°00′11|${^{\prime\prime}_{.}}$|0 (J2000)
V mag = 10.1
Rotational modulation 2 mmag at ∼20.7 d
pm (RA) 94.1 ± 0.9 (Dec.) −8.5 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG2
Teff (K)5830 ± 140
log g4.36 ± 0.07
|$v$| sin I (km s−1)3.1 ± 0.6
[Fe/H]+0.14 ± 0.16
log A(Li)<0.2
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)|$2.4^{+1.7}_{-1.0}$|
Parameters from MCMC analysis.
P (d)2.184 6730 ± 0.000 0014
Tc (HJD) (UTC)245 6338.458 51 ± 0.000 24
T14 (d)0.116 ± 0.001
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0105 ± 0.0003
b0.19 |$^{+0.21}_{-0.13}$|
i (°)88.4 |$^{+1.2}_{-2.1}$|
K1 (km s−1)0.1757 ± 0.0017
γ (km s−1)6.2845 ± 0.0004
e0 (adopted) (<0.04 at 3σ)
M* (M)1.11 ± 0.09
R* (R)1.13 |$^{+0.08}_{-0.04}$|
log g* (cgs)4.38 |$^{+0.02}_{-0.04}$|
ρ*)0.78 |$^{+0.04}_{-0.13}$|
Teff (K)5630 ± 130
MP (MJup)1.13 |$^{+0.1}_{-0.04}$|
RP (RJup)1.21 ± 0.06
log gP (cgs)3.34 |$^{+0.02}_{-0.07}$|
ρPJ)0.85 |$^{+0..07}_{-0.2}$|
a (au)0.034 16 ± 0.000 83
TP, A = 0 (K)1570 ± 50

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.701, a2 = −0.490, a3 = 1.077, a4 = −0.516

(Trap |$z$|) a1 = 0.780, a2 = −0.718, a3 = 1.082, a4 = −0.487.

Table 2.

System parameters for WASP-95.

1SWASP J222949.73−480011.0
2MASS 22294972−4800111
RA = 22h29m49|${^{\rm s}_{.}}$|73, Dec. = −48°00′11|${^{\prime\prime}_{.}}$|0 (J2000)
V mag = 10.1
Rotational modulation 2 mmag at ∼20.7 d
pm (RA) 94.1 ± 0.9 (Dec.) −8.5 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG2
Teff (K)5830 ± 140
log g4.36 ± 0.07
|$v$| sin I (km s−1)3.1 ± 0.6
[Fe/H]+0.14 ± 0.16
log A(Li)<0.2
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)|$2.4^{+1.7}_{-1.0}$|
Parameters from MCMC analysis.
P (d)2.184 6730 ± 0.000 0014
Tc (HJD) (UTC)245 6338.458 51 ± 0.000 24
T14 (d)0.116 ± 0.001
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0105 ± 0.0003
b0.19 |$^{+0.21}_{-0.13}$|
i (°)88.4 |$^{+1.2}_{-2.1}$|
K1 (km s−1)0.1757 ± 0.0017
γ (km s−1)6.2845 ± 0.0004
e0 (adopted) (<0.04 at 3σ)
M* (M)1.11 ± 0.09
R* (R)1.13 |$^{+0.08}_{-0.04}$|
log g* (cgs)4.38 |$^{+0.02}_{-0.04}$|
ρ*)0.78 |$^{+0.04}_{-0.13}$|
Teff (K)5630 ± 130
MP (MJup)1.13 |$^{+0.1}_{-0.04}$|
RP (RJup)1.21 ± 0.06
log gP (cgs)3.34 |$^{+0.02}_{-0.07}$|
ρPJ)0.85 |$^{+0..07}_{-0.2}$|
a (au)0.034 16 ± 0.000 83
TP, A = 0 (K)1570 ± 50
1SWASP J222949.73−480011.0
2MASS 22294972−4800111
RA = 22h29m49|${^{\rm s}_{.}}$|73, Dec. = −48°00′11|${^{\prime\prime}_{.}}$|0 (J2000)
V mag = 10.1
Rotational modulation 2 mmag at ∼20.7 d
pm (RA) 94.1 ± 0.9 (Dec.) −8.5 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG2
Teff (K)5830 ± 140
log g4.36 ± 0.07
|$v$| sin I (km s−1)3.1 ± 0.6
[Fe/H]+0.14 ± 0.16
log A(Li)<0.2
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)|$2.4^{+1.7}_{-1.0}$|
Parameters from MCMC analysis.
P (d)2.184 6730 ± 0.000 0014
Tc (HJD) (UTC)245 6338.458 51 ± 0.000 24
T14 (d)0.116 ± 0.001
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0105 ± 0.0003
b0.19 |$^{+0.21}_{-0.13}$|
i (°)88.4 |$^{+1.2}_{-2.1}$|
K1 (km s−1)0.1757 ± 0.0017
γ (km s−1)6.2845 ± 0.0004
e0 (adopted) (<0.04 at 3σ)
M* (M)1.11 ± 0.09
R* (R)1.13 |$^{+0.08}_{-0.04}$|
log g* (cgs)4.38 |$^{+0.02}_{-0.04}$|
ρ*)0.78 |$^{+0.04}_{-0.13}$|
Teff (K)5630 ± 130
MP (MJup)1.13 |$^{+0.1}_{-0.04}$|
RP (RJup)1.21 ± 0.06
log gP (cgs)3.34 |$^{+0.02}_{-0.07}$|
ρPJ)0.85 |$^{+0..07}_{-0.2}$|
a (au)0.034 16 ± 0.000 83
TP, A = 0 (K)1570 ± 50

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.701, a2 = −0.490, a3 = 1.077, a4 = −0.516

(Trap |$z$|) a1 = 0.780, a2 = −0.718, a3 = 1.082, a4 = −0.487.

Table 3.

System parameters for WASP-96.

1SWASP J000411.14−472138.2
2MASS 00041112−4721382
RA = 00h04m11|${^{\rm s}_{.}}$|14, Dec. = −47°21′38|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 12.2
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 23.1 ± 1.0 (Dec.) 3.7 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG8
Teff (K)5500 ± 150
log g4.25 ± 0.15
|$v$| sin I (km s−1)1.5 ± 1.3
[Fe/H]+0.14 ± 0.19
log A(Li)1.48 ± 0.15
Age (lithium) (Gyr)2 ∼ 5
Age (gyro) (Gy)|$8^{+26}_{-8}$|
Parameters from MCMC analysis.
P (d)3.425 2602 ± 0.000 0027
Tc (HJD) (UTC)245 6258.0621 ± 0.0002
T14 (d)0.1011 ± 0.0011
T12 = T34 (d)0.0200 ± 0.0014
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0138 ± 0.0003
b0.710 ± 0.019
i (°)85.6 ± 0.2
K1 (km s−1)0.062 ± 0.004
γ (km s−1)−1.233 00 ± 0.000 09
e0 (adopted) (<0.27 at 3σ)
M* (M)1.06 ± 0.09
R* (R)1.05 ± 0.05
log g* (cgs)4.42 ± 0.02
ρ*)0.922 ± 0.073
Teff (K)5540 ± 140
MP (MJup)0.48 ± 0.03
RP (RJup)1.20 ± 0.06
log gP (cgs)2.88 ± 0.04
ρPJ)0.28 ± 0.04
a (au)0.0453 ± 0.0013
TP, A = 0 (K)1285 ± 40
1SWASP J000411.14−472138.2
2MASS 00041112−4721382
RA = 00h04m11|${^{\rm s}_{.}}$|14, Dec. = −47°21′38|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 12.2
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 23.1 ± 1.0 (Dec.) 3.7 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG8
Teff (K)5500 ± 150
log g4.25 ± 0.15
|$v$| sin I (km s−1)1.5 ± 1.3
[Fe/H]+0.14 ± 0.19
log A(Li)1.48 ± 0.15
Age (lithium) (Gyr)2 ∼ 5
Age (gyro) (Gy)|$8^{+26}_{-8}$|
Parameters from MCMC analysis.
P (d)3.425 2602 ± 0.000 0027
Tc (HJD) (UTC)245 6258.0621 ± 0.0002
T14 (d)0.1011 ± 0.0011
T12 = T34 (d)0.0200 ± 0.0014
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0138 ± 0.0003
b0.710 ± 0.019
i (°)85.6 ± 0.2
K1 (km s−1)0.062 ± 0.004
γ (km s−1)−1.233 00 ± 0.000 09
e0 (adopted) (<0.27 at 3σ)
M* (M)1.06 ± 0.09
R* (R)1.05 ± 0.05
log g* (cgs)4.42 ± 0.02
ρ*)0.922 ± 0.073
Teff (K)5540 ± 140
MP (MJup)0.48 ± 0.03
RP (RJup)1.20 ± 0.06
log gP (cgs)2.88 ± 0.04
ρPJ)0.28 ± 0.04
a (au)0.0453 ± 0.0013
TP, A = 0 (K)1285 ± 40

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.722, a2 = −0.581, a3 = 1.203, a4 = −0.561

(Trap BB) a1 = 0.722, a2 = −0.581, a3 = 1.203, a4 = −0.561.

Table 3.

System parameters for WASP-96.

1SWASP J000411.14−472138.2
2MASS 00041112−4721382
RA = 00h04m11|${^{\rm s}_{.}}$|14, Dec. = −47°21′38|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 12.2
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 23.1 ± 1.0 (Dec.) 3.7 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG8
Teff (K)5500 ± 150
log g4.25 ± 0.15
|$v$| sin I (km s−1)1.5 ± 1.3
[Fe/H]+0.14 ± 0.19
log A(Li)1.48 ± 0.15
Age (lithium) (Gyr)2 ∼ 5
Age (gyro) (Gy)|$8^{+26}_{-8}$|
Parameters from MCMC analysis.
P (d)3.425 2602 ± 0.000 0027
Tc (HJD) (UTC)245 6258.0621 ± 0.0002
T14 (d)0.1011 ± 0.0011
T12 = T34 (d)0.0200 ± 0.0014
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0138 ± 0.0003
b0.710 ± 0.019
i (°)85.6 ± 0.2
K1 (km s−1)0.062 ± 0.004
γ (km s−1)−1.233 00 ± 0.000 09
e0 (adopted) (<0.27 at 3σ)
M* (M)1.06 ± 0.09
R* (R)1.05 ± 0.05
log g* (cgs)4.42 ± 0.02
ρ*)0.922 ± 0.073
Teff (K)5540 ± 140
MP (MJup)0.48 ± 0.03
RP (RJup)1.20 ± 0.06
log gP (cgs)2.88 ± 0.04
ρPJ)0.28 ± 0.04
a (au)0.0453 ± 0.0013
TP, A = 0 (K)1285 ± 40
1SWASP J000411.14−472138.2
2MASS 00041112−4721382
RA = 00h04m11|${^{\rm s}_{.}}$|14, Dec. = −47°21′38|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 12.2
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 23.1 ± 1.0 (Dec.) 3.7 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG8
Teff (K)5500 ± 150
log g4.25 ± 0.15
|$v$| sin I (km s−1)1.5 ± 1.3
[Fe/H]+0.14 ± 0.19
log A(Li)1.48 ± 0.15
Age (lithium) (Gyr)2 ∼ 5
Age (gyro) (Gy)|$8^{+26}_{-8}$|
Parameters from MCMC analysis.
P (d)3.425 2602 ± 0.000 0027
Tc (HJD) (UTC)245 6258.0621 ± 0.0002
T14 (d)0.1011 ± 0.0011
T12 = T34 (d)0.0200 ± 0.0014
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0138 ± 0.0003
b0.710 ± 0.019
i (°)85.6 ± 0.2
K1 (km s−1)0.062 ± 0.004
γ (km s−1)−1.233 00 ± 0.000 09
e0 (adopted) (<0.27 at 3σ)
M* (M)1.06 ± 0.09
R* (R)1.05 ± 0.05
log g* (cgs)4.42 ± 0.02
ρ*)0.922 ± 0.073
Teff (K)5540 ± 140
MP (MJup)0.48 ± 0.03
RP (RJup)1.20 ± 0.06
log gP (cgs)2.88 ± 0.04
ρPJ)0.28 ± 0.04
a (au)0.0453 ± 0.0013
TP, A = 0 (K)1285 ± 40

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.722, a2 = −0.581, a3 = 1.203, a4 = −0.561

(Trap BB) a1 = 0.722, a2 = −0.581, a3 = 1.203, a4 = −0.561.

Table 4.

System parameters for WASP-97.

1SWASP J013825.04−554619.4
2MASS 01382504−5546194
RA = 01h38m25|${^{\rm s}_{.}}$|04, Dec. = −55°46′19|${^{\prime\prime}_{.}}$|4 (J2000)
V mag = 10.6
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 94.6 ± 1.1 (Dec.) 20.8 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG5
Teff (K)5670 ± 110
log g4.45 ± 0.08
|$v$| sin I (km s−1)1.1 ± 0.5
[Fe/H]+0.23 ± 0.11
log A(Li)<0.85
Age (lithium) (Gyr)>5
Age (gyro) (Gyr)11.9|$^{+16.0}_{-8.3}$|
Parameters from MCMC analysis.
P (d)2.072 760 ± 0.000 001
Tc (HJD) (UTC)245 6438.186 83 ± 0.000 18
T14 (d)0.1076 ± 0.0008
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0119 ± 0.0002
b0.23 |$^{+0.11}_{-0.15}$|
i (°)88.0 |$^{+1.3}_{-1.0}$|
K1 (km s−1)0.1945 ± 0.0023
γ (km s−1)6.808 77 ± 0.000 29
e0 (adopted) (<0.05 at 3σ)
M* (M)1.12 ± 0.06
R* (R)1.06 ± 0.04
log g* (cgs)4.43 ± 0.03
ρ*)0.93 ± 0.09
Teff (K)5640 ± 100
MP (MJup)1.32 ± 0.05
RP (RJup)1.13 ± 0.06
log gP (cgs)3.37 ± 0.04
ρPJ)0.91 ± 0.11
a (au)0.033 03 ± 0.000 56
TP, A = 0 (K)1555 ± 40
1SWASP J013825.04−554619.4
2MASS 01382504−5546194
RA = 01h38m25|${^{\rm s}_{.}}$|04, Dec. = −55°46′19|${^{\prime\prime}_{.}}$|4 (J2000)
V mag = 10.6
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 94.6 ± 1.1 (Dec.) 20.8 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG5
Teff (K)5670 ± 110
log g4.45 ± 0.08
|$v$| sin I (km s−1)1.1 ± 0.5
[Fe/H]+0.23 ± 0.11
log A(Li)<0.85
Age (lithium) (Gyr)>5
Age (gyro) (Gyr)11.9|$^{+16.0}_{-8.3}$|
Parameters from MCMC analysis.
P (d)2.072 760 ± 0.000 001
Tc (HJD) (UTC)245 6438.186 83 ± 0.000 18
T14 (d)0.1076 ± 0.0008
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0119 ± 0.0002
b0.23 |$^{+0.11}_{-0.15}$|
i (°)88.0 |$^{+1.3}_{-1.0}$|
K1 (km s−1)0.1945 ± 0.0023
γ (km s−1)6.808 77 ± 0.000 29
e0 (adopted) (<0.05 at 3σ)
M* (M)1.12 ± 0.06
R* (R)1.06 ± 0.04
log g* (cgs)4.43 ± 0.03
ρ*)0.93 ± 0.09
Teff (K)5640 ± 100
MP (MJup)1.32 ± 0.05
RP (RJup)1.13 ± 0.06
log gP (cgs)3.37 ± 0.04
ρPJ)0.91 ± 0.11
a (au)0.033 03 ± 0.000 56
TP, A = 0 (K)1555 ± 40

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.700, a2 = −0.489, a3 = 1.077, a4 = −0.516

(Trap Iz) a1 = 0.778, a2 = −0.713, a3 = 1.077, a4 = −0.484.

Table 4.

System parameters for WASP-97.

1SWASP J013825.04−554619.4
2MASS 01382504−5546194
RA = 01h38m25|${^{\rm s}_{.}}$|04, Dec. = −55°46′19|${^{\prime\prime}_{.}}$|4 (J2000)
V mag = 10.6
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 94.6 ± 1.1 (Dec.) 20.8 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG5
Teff (K)5670 ± 110
log g4.45 ± 0.08
|$v$| sin I (km s−1)1.1 ± 0.5
[Fe/H]+0.23 ± 0.11
log A(Li)<0.85
Age (lithium) (Gyr)>5
Age (gyro) (Gyr)11.9|$^{+16.0}_{-8.3}$|
Parameters from MCMC analysis.
P (d)2.072 760 ± 0.000 001
Tc (HJD) (UTC)245 6438.186 83 ± 0.000 18
T14 (d)0.1076 ± 0.0008
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0119 ± 0.0002
b0.23 |$^{+0.11}_{-0.15}$|
i (°)88.0 |$^{+1.3}_{-1.0}$|
K1 (km s−1)0.1945 ± 0.0023
γ (km s−1)6.808 77 ± 0.000 29
e0 (adopted) (<0.05 at 3σ)
M* (M)1.12 ± 0.06
R* (R)1.06 ± 0.04
log g* (cgs)4.43 ± 0.03
ρ*)0.93 ± 0.09
Teff (K)5640 ± 100
MP (MJup)1.32 ± 0.05
RP (RJup)1.13 ± 0.06
log gP (cgs)3.37 ± 0.04
ρPJ)0.91 ± 0.11
a (au)0.033 03 ± 0.000 56
TP, A = 0 (K)1555 ± 40
1SWASP J013825.04−554619.4
2MASS 01382504−5546194
RA = 01h38m25|${^{\rm s}_{.}}$|04, Dec. = −55°46′19|${^{\prime\prime}_{.}}$|4 (J2000)
V mag = 10.6
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 94.6 ± 1.1 (Dec.) 20.8 ± 1.0 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG5
Teff (K)5670 ± 110
log g4.45 ± 0.08
|$v$| sin I (km s−1)1.1 ± 0.5
[Fe/H]+0.23 ± 0.11
log A(Li)<0.85
Age (lithium) (Gyr)>5
Age (gyro) (Gyr)11.9|$^{+16.0}_{-8.3}$|
Parameters from MCMC analysis.
P (d)2.072 760 ± 0.000 001
Tc (HJD) (UTC)245 6438.186 83 ± 0.000 18
T14 (d)0.1076 ± 0.0008
T12 = T34 (d)0.011 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0119 ± 0.0002
b0.23 |$^{+0.11}_{-0.15}$|
i (°)88.0 |$^{+1.3}_{-1.0}$|
K1 (km s−1)0.1945 ± 0.0023
γ (km s−1)6.808 77 ± 0.000 29
e0 (adopted) (<0.05 at 3σ)
M* (M)1.12 ± 0.06
R* (R)1.06 ± 0.04
log g* (cgs)4.43 ± 0.03
ρ*)0.93 ± 0.09
Teff (K)5640 ± 100
MP (MJup)1.32 ± 0.05
RP (RJup)1.13 ± 0.06
log gP (cgs)3.37 ± 0.04
ρPJ)0.91 ± 0.11
a (au)0.033 03 ± 0.000 56
TP, A = 0 (K)1555 ± 40

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.700, a2 = −0.489, a3 = 1.077, a4 = −0.516

(Trap Iz) a1 = 0.778, a2 = −0.713, a3 = 1.077, a4 = −0.484.

Table 5.

System parameters for WASP-98.

1SWASP J035342.90−341941.7
2MASS 03534291−3419414
RA = 03h53m42|${^{\rm s}_{.}}$|90, Dec. = −34°19′41|${^{\prime\prime}_{.}}$|7 (J2000)
V mag = 13.0
Rotational modulation < 2 mmag (95 per cent)
pm (RA) 32.0 ± 1.1 (Dec.) −13.4 ± 1.1 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG7
Teff (K)5550 ± 140
log g4.40 ± 0.15
|$v$| sin I (km s−1)<0.5
[Fe/H]−0.60 ± 0.19
log A(Li)<0.91
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)>8
Parameters from MCMC analysis.
P (d)2.962 6400 ± 0.000 0013
Tc (HJD) (UTC)245 6333.3913 ± 0.0001
T14 (d)0.0795 ± 0.0005
T12 = T34 (d)0.0202 ± 0.0006
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.025 70 ± 0.000 25
b0.71 ± 0.01
i (°)86.3 ± 0.1
K1 (km s−1)0.15 ± 0.01
γ (km s−1)−38.2882 ± 0.0003
e0 (adopted) (<0.24 at 3σ)
M* (M)0.69 ± 0.06
R* (R)0.70 ± 0.02
log g* (cgs)4.583 ± 0.014
ρ*)1.99 ± 0.07
Teff (K)5525 ± 130
MP (MJup)0.83 ± 0.07
RP (RJup)1.10 ± 0.04
log gP (cgs)3.20 ± 0.03
ρPJ)0.63 ± 0.06
a (au)0.036 ± 0.001
TP, A = 0 (K)1180 ± 30
1SWASP J035342.90−341941.7
2MASS 03534291−3419414
RA = 03h53m42|${^{\rm s}_{.}}$|90, Dec. = −34°19′41|${^{\prime\prime}_{.}}$|7 (J2000)
V mag = 13.0
Rotational modulation < 2 mmag (95 per cent)
pm (RA) 32.0 ± 1.1 (Dec.) −13.4 ± 1.1 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG7
Teff (K)5550 ± 140
log g4.40 ± 0.15
|$v$| sin I (km s−1)<0.5
[Fe/H]−0.60 ± 0.19
log A(Li)<0.91
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)>8
Parameters from MCMC analysis.
P (d)2.962 6400 ± 0.000 0013
Tc (HJD) (UTC)245 6333.3913 ± 0.0001
T14 (d)0.0795 ± 0.0005
T12 = T34 (d)0.0202 ± 0.0006
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.025 70 ± 0.000 25
b0.71 ± 0.01
i (°)86.3 ± 0.1
K1 (km s−1)0.15 ± 0.01
γ (km s−1)−38.2882 ± 0.0003
e0 (adopted) (<0.24 at 3σ)
M* (M)0.69 ± 0.06
R* (R)0.70 ± 0.02
log g* (cgs)4.583 ± 0.014
ρ*)1.99 ± 0.07
Teff (K)5525 ± 130
MP (MJup)0.83 ± 0.07
RP (RJup)1.10 ± 0.04
log gP (cgs)3.20 ± 0.03
ρPJ)0.63 ± 0.06
a (au)0.036 ± 0.001
TP, A = 0 (K)1180 ± 30

Errors are 1σ; limb-darkening coefficients were

(Euler I) a1 = 0.558, a2 = −0.157, a3 = 0.576, a4 = −0.325

(Trap BB) a1 = 0.486, a2 = 0.090, a3 = 0.444, a4 = −0.294.

Table 5.

System parameters for WASP-98.

1SWASP J035342.90−341941.7
2MASS 03534291−3419414
RA = 03h53m42|${^{\rm s}_{.}}$|90, Dec. = −34°19′41|${^{\prime\prime}_{.}}$|7 (J2000)
V mag = 13.0
Rotational modulation < 2 mmag (95 per cent)
pm (RA) 32.0 ± 1.1 (Dec.) −13.4 ± 1.1 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG7
Teff (K)5550 ± 140
log g4.40 ± 0.15
|$v$| sin I (km s−1)<0.5
[Fe/H]−0.60 ± 0.19
log A(Li)<0.91
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)>8
Parameters from MCMC analysis.
P (d)2.962 6400 ± 0.000 0013
Tc (HJD) (UTC)245 6333.3913 ± 0.0001
T14 (d)0.0795 ± 0.0005
T12 = T34 (d)0.0202 ± 0.0006
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.025 70 ± 0.000 25
b0.71 ± 0.01
i (°)86.3 ± 0.1
K1 (km s−1)0.15 ± 0.01
γ (km s−1)−38.2882 ± 0.0003
e0 (adopted) (<0.24 at 3σ)
M* (M)0.69 ± 0.06
R* (R)0.70 ± 0.02
log g* (cgs)4.583 ± 0.014
ρ*)1.99 ± 0.07
Teff (K)5525 ± 130
MP (MJup)0.83 ± 0.07
RP (RJup)1.10 ± 0.04
log gP (cgs)3.20 ± 0.03
ρPJ)0.63 ± 0.06
a (au)0.036 ± 0.001
TP, A = 0 (K)1180 ± 30
1SWASP J035342.90−341941.7
2MASS 03534291−3419414
RA = 03h53m42|${^{\rm s}_{.}}$|90, Dec. = −34°19′41|${^{\prime\prime}_{.}}$|7 (J2000)
V mag = 13.0
Rotational modulation < 2 mmag (95 per cent)
pm (RA) 32.0 ± 1.1 (Dec.) −13.4 ± 1.1 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeG7
Teff (K)5550 ± 140
log g4.40 ± 0.15
|$v$| sin I (km s−1)<0.5
[Fe/H]−0.60 ± 0.19
log A(Li)<0.91
Age (lithium) (Gyr)>3
Age (gyro) (Gyr)>8
Parameters from MCMC analysis.
P (d)2.962 6400 ± 0.000 0013
Tc (HJD) (UTC)245 6333.3913 ± 0.0001
T14 (d)0.0795 ± 0.0005
T12 = T34 (d)0.0202 ± 0.0006
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.025 70 ± 0.000 25
b0.71 ± 0.01
i (°)86.3 ± 0.1
K1 (km s−1)0.15 ± 0.01
γ (km s−1)−38.2882 ± 0.0003
e0 (adopted) (<0.24 at 3σ)
M* (M)0.69 ± 0.06
R* (R)0.70 ± 0.02
log g* (cgs)4.583 ± 0.014
ρ*)1.99 ± 0.07
Teff (K)5525 ± 130
MP (MJup)0.83 ± 0.07
RP (RJup)1.10 ± 0.04
log gP (cgs)3.20 ± 0.03
ρPJ)0.63 ± 0.06
a (au)0.036 ± 0.001
TP, A = 0 (K)1180 ± 30

Errors are 1σ; limb-darkening coefficients were

(Euler I) a1 = 0.558, a2 = −0.157, a3 = 0.576, a4 = −0.325

(Trap BB) a1 = 0.486, a2 = 0.090, a3 = 0.444, a4 = −0.294.

Table 6.

System parameters for WASP-99.

1SWASP J023935.44−500028.8
2MASS 02393544−5000288
RA = 02h39m35|${^{\rm s}_{.}}$|44, Dec. = −50°00′28|${^{\prime\prime}_{.}}$|8 (J2000)
V mag = 9.5
Rotational modulation < 2 mmag (95 per cent)
pm (RA) −2.7 ± 1.1 (Dec.) −38.1 ± 0.9 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF8
Teff (K)6150 ± 100
log g4.3 ± 0.1
|$v$| sin I (km s−1)6.8 ± 0.5
[Fe/H]+0.21 ± 0.15
log A(Li)2.52 ± 0.08
Age (lithium) (Gyr)1 ∼ 3
Age (gyro) (Gyr)|$1.4^{+1.1}_{-0.6}$|
Parameters from MCMC analysis.
P (d)5.752 51 ± 0.000 04
Tc (HJD) (UTC)245 6224.9824 ± 0.0014
T14 (d)0.219 ± 0.003
T12 = T34 (d)0.0137 |$^{+0.0017}_{-0.0006}$|
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0041 ± 0.0002
b0.18 ± 0.17
i (°)88.8 ± 1.1
K1 (km s−1)0.2422 ± 0.0017
γ (km s−1)24.9610 ± 0.0002
e0 (adopted) (<0.02 at 3σ)
M* (M)1.48 ± 0.10
R* (R)1.76 |$^{+0.11}_{-0.06}$|
log g* (cgs)4.12 |$^{+0.02}_{-0.04}$|
ρ*)0.27 |$^{+0.02}_{-0.04}$|
Teff (K)6180 ± 100
MP (MJup)2.78 ± 0.13
RP (RJup)1.10 |$^{+0.08}_{-0.05}$|
log gP (cgs)3.72 |$^{+0.03}_{-0.06}$|
ρPJ)2.1 ± 0.3
a (au)0.0717 ± 0.0016
TP, A = 0 (K)1480 ± 40
1SWASP J023935.44−500028.8
2MASS 02393544−5000288
RA = 02h39m35|${^{\rm s}_{.}}$|44, Dec. = −50°00′28|${^{\prime\prime}_{.}}$|8 (J2000)
V mag = 9.5
Rotational modulation < 2 mmag (95 per cent)
pm (RA) −2.7 ± 1.1 (Dec.) −38.1 ± 0.9 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF8
Teff (K)6150 ± 100
log g4.3 ± 0.1
|$v$| sin I (km s−1)6.8 ± 0.5
[Fe/H]+0.21 ± 0.15
log A(Li)2.52 ± 0.08
Age (lithium) (Gyr)1 ∼ 3
Age (gyro) (Gyr)|$1.4^{+1.1}_{-0.6}$|
Parameters from MCMC analysis.
P (d)5.752 51 ± 0.000 04
Tc (HJD) (UTC)245 6224.9824 ± 0.0014
T14 (d)0.219 ± 0.003
T12 = T34 (d)0.0137 |$^{+0.0017}_{-0.0006}$|
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0041 ± 0.0002
b0.18 ± 0.17
i (°)88.8 ± 1.1
K1 (km s−1)0.2422 ± 0.0017
γ (km s−1)24.9610 ± 0.0002
e0 (adopted) (<0.02 at 3σ)
M* (M)1.48 ± 0.10
R* (R)1.76 |$^{+0.11}_{-0.06}$|
log g* (cgs)4.12 |$^{+0.02}_{-0.04}$|
ρ*)0.27 |$^{+0.02}_{-0.04}$|
Teff (K)6180 ± 100
MP (MJup)2.78 ± 0.13
RP (RJup)1.10 |$^{+0.08}_{-0.05}$|
log gP (cgs)3.72 |$^{+0.03}_{-0.06}$|
ρPJ)2.1 ± 0.3
a (au)0.0717 ± 0.0016
TP, A = 0 (K)1480 ± 40

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.590, a2 = 0.036, a3 = 0.306, a4 = −0.205.

Table 6.

System parameters for WASP-99.

1SWASP J023935.44−500028.8
2MASS 02393544−5000288
RA = 02h39m35|${^{\rm s}_{.}}$|44, Dec. = −50°00′28|${^{\prime\prime}_{.}}$|8 (J2000)
V mag = 9.5
Rotational modulation < 2 mmag (95 per cent)
pm (RA) −2.7 ± 1.1 (Dec.) −38.1 ± 0.9 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF8
Teff (K)6150 ± 100
log g4.3 ± 0.1
|$v$| sin I (km s−1)6.8 ± 0.5
[Fe/H]+0.21 ± 0.15
log A(Li)2.52 ± 0.08
Age (lithium) (Gyr)1 ∼ 3
Age (gyro) (Gyr)|$1.4^{+1.1}_{-0.6}$|
Parameters from MCMC analysis.
P (d)5.752 51 ± 0.000 04
Tc (HJD) (UTC)245 6224.9824 ± 0.0014
T14 (d)0.219 ± 0.003
T12 = T34 (d)0.0137 |$^{+0.0017}_{-0.0006}$|
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0041 ± 0.0002
b0.18 ± 0.17
i (°)88.8 ± 1.1
K1 (km s−1)0.2422 ± 0.0017
γ (km s−1)24.9610 ± 0.0002
e0 (adopted) (<0.02 at 3σ)
M* (M)1.48 ± 0.10
R* (R)1.76 |$^{+0.11}_{-0.06}$|
log g* (cgs)4.12 |$^{+0.02}_{-0.04}$|
ρ*)0.27 |$^{+0.02}_{-0.04}$|
Teff (K)6180 ± 100
MP (MJup)2.78 ± 0.13
RP (RJup)1.10 |$^{+0.08}_{-0.05}$|
log gP (cgs)3.72 |$^{+0.03}_{-0.06}$|
ρPJ)2.1 ± 0.3
a (au)0.0717 ± 0.0016
TP, A = 0 (K)1480 ± 40
1SWASP J023935.44−500028.8
2MASS 02393544−5000288
RA = 02h39m35|${^{\rm s}_{.}}$|44, Dec. = −50°00′28|${^{\prime\prime}_{.}}$|8 (J2000)
V mag = 9.5
Rotational modulation < 2 mmag (95 per cent)
pm (RA) −2.7 ± 1.1 (Dec.) −38.1 ± 0.9 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF8
Teff (K)6150 ± 100
log g4.3 ± 0.1
|$v$| sin I (km s−1)6.8 ± 0.5
[Fe/H]+0.21 ± 0.15
log A(Li)2.52 ± 0.08
Age (lithium) (Gyr)1 ∼ 3
Age (gyro) (Gyr)|$1.4^{+1.1}_{-0.6}$|
Parameters from MCMC analysis.
P (d)5.752 51 ± 0.000 04
Tc (HJD) (UTC)245 6224.9824 ± 0.0014
T14 (d)0.219 ± 0.003
T12 = T34 (d)0.0137 |$^{+0.0017}_{-0.0006}$|
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0041 ± 0.0002
b0.18 ± 0.17
i (°)88.8 ± 1.1
K1 (km s−1)0.2422 ± 0.0017
γ (km s−1)24.9610 ± 0.0002
e0 (adopted) (<0.02 at 3σ)
M* (M)1.48 ± 0.10
R* (R)1.76 |$^{+0.11}_{-0.06}$|
log g* (cgs)4.12 |$^{+0.02}_{-0.04}$|
ρ*)0.27 |$^{+0.02}_{-0.04}$|
Teff (K)6180 ± 100
MP (MJup)2.78 ± 0.13
RP (RJup)1.10 |$^{+0.08}_{-0.05}$|
log gP (cgs)3.72 |$^{+0.03}_{-0.06}$|
ρPJ)2.1 ± 0.3
a (au)0.0717 ± 0.0016
TP, A = 0 (K)1480 ± 40

Errors are 1σ; limb-darkening coefficients were

(Euler r) a1 = 0.590, a2 = 0.036, a3 = 0.306, a4 = −0.205.

Table 7.

System parameters for WASP-100.

1SWASP J043550.32−640137.3
2MASS 04355033−6401373
RA = 04h35m50|${^{\rm s}_{.}}$|32, Dec. = −64°01′37|${^{\prime\prime}_{.}}$|3 (J2000)
V mag = 10.8
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 11.9 ± 1.0 (Dec.) −2.2 ± 2.3 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF2
Teff (K)6900 ± 120
log g4.35 ± 0.17
|$v$| sin I (km s−1)12.8 ± 0.8
[Fe/H]−0.03 ± 0.10
log A(Li)<1.80
Age (lithium) (Gyr)Too hot
Age (gyro) (Gyr)Too hot
Parameters from MCMC analysis.
P (d)2.849 375 ± 0.000 008
Tc (HJD) (UTC)245 6272.3395 ± 0.0009
T14 (d)0.160 ± 0.005
T12 = T34 (d)0.021 ± 0.005
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0076 ± 0.0005
b0.64 |$^{+0.08}_{-0.16}$|
i (°)82.6 |$^{+2.6}_{-1.7}$|
K1 (km s−1)0.213 ± 0.008
γ (km s−1)29.9650 ± 0.0002
e0 (adopted) (<0.10 at 3σ)
M* (M)1.57 ± 0.10
R* (R)2.0 ± 0.3
log g* (cgs)4.04 ± 0.11
ρ*)0.20 |$^{+0.10}_{-0.05}$|
Teff (K)6900 ± 120
MP (MJup)2.03 ± 0.12
RP (RJup)1.69 ± 0.29
log gP (cgs)3.21 ± 0.15
ρPJ)0.4 ± 0.2
a (au)0.0457 ± 0.0010
TP, A = 0 (K)2190 ± 140
1SWASP J043550.32−640137.3
2MASS 04355033−6401373
RA = 04h35m50|${^{\rm s}_{.}}$|32, Dec. = −64°01′37|${^{\prime\prime}_{.}}$|3 (J2000)
V mag = 10.8
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 11.9 ± 1.0 (Dec.) −2.2 ± 2.3 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF2
Teff (K)6900 ± 120
log g4.35 ± 0.17
|$v$| sin I (km s−1)12.8 ± 0.8
[Fe/H]−0.03 ± 0.10
log A(Li)<1.80
Age (lithium) (Gyr)Too hot
Age (gyro) (Gyr)Too hot
Parameters from MCMC analysis.
P (d)2.849 375 ± 0.000 008
Tc (HJD) (UTC)245 6272.3395 ± 0.0009
T14 (d)0.160 ± 0.005
T12 = T34 (d)0.021 ± 0.005
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0076 ± 0.0005
b0.64 |$^{+0.08}_{-0.16}$|
i (°)82.6 |$^{+2.6}_{-1.7}$|
K1 (km s−1)0.213 ± 0.008
γ (km s−1)29.9650 ± 0.0002
e0 (adopted) (<0.10 at 3σ)
M* (M)1.57 ± 0.10
R* (R)2.0 ± 0.3
log g* (cgs)4.04 ± 0.11
ρ*)0.20 |$^{+0.10}_{-0.05}$|
Teff (K)6900 ± 120
MP (MJup)2.03 ± 0.12
RP (RJup)1.69 ± 0.29
log gP (cgs)3.21 ± 0.15
ρPJ)0.4 ± 0.2
a (au)0.0457 ± 0.0010
TP, A = 0 (K)2190 ± 140

Errors are 1σ; limb-darkening coefficients were

(Trap Iz) a1 = 0.542, a2 = 0.086, a3 = 0.001, a4 = −0.055.

Table 7.

System parameters for WASP-100.

1SWASP J043550.32−640137.3
2MASS 04355033−6401373
RA = 04h35m50|${^{\rm s}_{.}}$|32, Dec. = −64°01′37|${^{\prime\prime}_{.}}$|3 (J2000)
V mag = 10.8
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 11.9 ± 1.0 (Dec.) −2.2 ± 2.3 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF2
Teff (K)6900 ± 120
log g4.35 ± 0.17
|$v$| sin I (km s−1)12.8 ± 0.8
[Fe/H]−0.03 ± 0.10
log A(Li)<1.80
Age (lithium) (Gyr)Too hot
Age (gyro) (Gyr)Too hot
Parameters from MCMC analysis.
P (d)2.849 375 ± 0.000 008
Tc (HJD) (UTC)245 6272.3395 ± 0.0009
T14 (d)0.160 ± 0.005
T12 = T34 (d)0.021 ± 0.005
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0076 ± 0.0005
b0.64 |$^{+0.08}_{-0.16}$|
i (°)82.6 |$^{+2.6}_{-1.7}$|
K1 (km s−1)0.213 ± 0.008
γ (km s−1)29.9650 ± 0.0002
e0 (adopted) (<0.10 at 3σ)
M* (M)1.57 ± 0.10
R* (R)2.0 ± 0.3
log g* (cgs)4.04 ± 0.11
ρ*)0.20 |$^{+0.10}_{-0.05}$|
Teff (K)6900 ± 120
MP (MJup)2.03 ± 0.12
RP (RJup)1.69 ± 0.29
log gP (cgs)3.21 ± 0.15
ρPJ)0.4 ± 0.2
a (au)0.0457 ± 0.0010
TP, A = 0 (K)2190 ± 140
1SWASP J043550.32−640137.3
2MASS 04355033−6401373
RA = 04h35m50|${^{\rm s}_{.}}$|32, Dec. = −64°01′37|${^{\prime\prime}_{.}}$|3 (J2000)
V mag = 10.8
Rotational modulation < 1 mmag (95 per cent)
pm (RA) 11.9 ± 1.0 (Dec.) −2.2 ± 2.3 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF2
Teff (K)6900 ± 120
log g4.35 ± 0.17
|$v$| sin I (km s−1)12.8 ± 0.8
[Fe/H]−0.03 ± 0.10
log A(Li)<1.80
Age (lithium) (Gyr)Too hot
Age (gyro) (Gyr)Too hot
Parameters from MCMC analysis.
P (d)2.849 375 ± 0.000 008
Tc (HJD) (UTC)245 6272.3395 ± 0.0009
T14 (d)0.160 ± 0.005
T12 = T34 (d)0.021 ± 0.005
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0076 ± 0.0005
b0.64 |$^{+0.08}_{-0.16}$|
i (°)82.6 |$^{+2.6}_{-1.7}$|
K1 (km s−1)0.213 ± 0.008
γ (km s−1)29.9650 ± 0.0002
e0 (adopted) (<0.10 at 3σ)
M* (M)1.57 ± 0.10
R* (R)2.0 ± 0.3
log g* (cgs)4.04 ± 0.11
ρ*)0.20 |$^{+0.10}_{-0.05}$|
Teff (K)6900 ± 120
MP (MJup)2.03 ± 0.12
RP (RJup)1.69 ± 0.29
log gP (cgs)3.21 ± 0.15
ρPJ)0.4 ± 0.2
a (au)0.0457 ± 0.0010
TP, A = 0 (K)2190 ± 140

Errors are 1σ; limb-darkening coefficients were

(Trap Iz) a1 = 0.542, a2 = 0.086, a3 = 0.001, a4 = −0.055.

Table 8.

System parameters for WASP-101.

1SWASP J063324.26−232910.2
2MASS 06332426−2329103
RA = 06h33|$^{\rm m}24{{^{\rm s}_{.}}}26$|, Dec. = −23°29′10|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 10.3
Rotational modulation < 1 mmag (95 per cent)
pm (RA) −2.3 ± 0.9 (Dec.) 23.3 ± 1.2 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF6
Teff (K)6380 ± 120
log g4.31 ± 0.08
|$v$| sin I (km s−1)12.4 ± 0.5
[Fe/H]+0.20 ± 0.12
log A(Li)2.80 ± 0.09
Age (lithium) (Gyr)0.5 ∼ 2
Age (gyro) (Gyr)|$0.9^{+1.3}_{-0.4}$|
Parameters from MCMC analysis.
P (d)3.585 722 ± 0.000 004
Tc (HJD) (UTC)245 6164.6934 ± 0.0002
T14 (d)0.113 ± 0.001
T12 = T34 (d)0.023 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0126 ± 0.0002
b0.736 ± 0.013
i (°)85.0 ± 0.2
K1 (km s−1)0.054 ± 0.004
γ (km s−1)42.6373 ± 0.0006
e0 (adopted) (<0.03 at 3σ)
M* (M)1.34 ± 0.07
R* (R)1.29 ± 0.04
log g* (cgs)4.345 ± 0.019
ρ*)0.626 ± 0.043
Teff (K)6400 ± 110
MP (MJup)0.50 ± 0.04
RP (RJup)1.41 ± 0.05
log gP (cgs)2.76 ± 0.04
ρPJ)0.18 ± 0.02
a (au)0.0506 ± 0.0009
TP, A = 0 (K)1560 ± 35
1SWASP J063324.26−232910.2
2MASS 06332426−2329103
RA = 06h33|$^{\rm m}24{{^{\rm s}_{.}}}26$|, Dec. = −23°29′10|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 10.3
Rotational modulation < 1 mmag (95 per cent)
pm (RA) −2.3 ± 0.9 (Dec.) 23.3 ± 1.2 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF6
Teff (K)6380 ± 120
log g4.31 ± 0.08
|$v$| sin I (km s−1)12.4 ± 0.5
[Fe/H]+0.20 ± 0.12
log A(Li)2.80 ± 0.09
Age (lithium) (Gyr)0.5 ∼ 2
Age (gyro) (Gyr)|$0.9^{+1.3}_{-0.4}$|
Parameters from MCMC analysis.
P (d)3.585 722 ± 0.000 004
Tc (HJD) (UTC)245 6164.6934 ± 0.0002
T14 (d)0.113 ± 0.001
T12 = T34 (d)0.023 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0126 ± 0.0002
b0.736 ± 0.013
i (°)85.0 ± 0.2
K1 (km s−1)0.054 ± 0.004
γ (km s−1)42.6373 ± 0.0006
e0 (adopted) (<0.03 at 3σ)
M* (M)1.34 ± 0.07
R* (R)1.29 ± 0.04
log g* (cgs)4.345 ± 0.019
ρ*)0.626 ± 0.043
Teff (K)6400 ± 110
MP (MJup)0.50 ± 0.04
RP (RJup)1.41 ± 0.05
log gP (cgs)2.76 ± 0.04
ρPJ)0.18 ± 0.02
a (au)0.0506 ± 0.0009
TP, A = 0 (K)1560 ± 35

Errors are 1σ; limb-darkening coefficients were

(Trap |$z$|) a1 = 0.640, a2 = −0.172, a3 = 0.302, a4 = −0.174

(Euler r) a1 = 0.548, a2 = 0.238, a3 = −0.010, a4 = −0.067.

Table 8.

System parameters for WASP-101.

1SWASP J063324.26−232910.2
2MASS 06332426−2329103
RA = 06h33|$^{\rm m}24{{^{\rm s}_{.}}}26$|, Dec. = −23°29′10|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 10.3
Rotational modulation < 1 mmag (95 per cent)
pm (RA) −2.3 ± 0.9 (Dec.) 23.3 ± 1.2 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF6
Teff (K)6380 ± 120
log g4.31 ± 0.08
|$v$| sin I (km s−1)12.4 ± 0.5
[Fe/H]+0.20 ± 0.12
log A(Li)2.80 ± 0.09
Age (lithium) (Gyr)0.5 ∼ 2
Age (gyro) (Gyr)|$0.9^{+1.3}_{-0.4}$|
Parameters from MCMC analysis.
P (d)3.585 722 ± 0.000 004
Tc (HJD) (UTC)245 6164.6934 ± 0.0002
T14 (d)0.113 ± 0.001
T12 = T34 (d)0.023 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0126 ± 0.0002
b0.736 ± 0.013
i (°)85.0 ± 0.2
K1 (km s−1)0.054 ± 0.004
γ (km s−1)42.6373 ± 0.0006
e0 (adopted) (<0.03 at 3σ)
M* (M)1.34 ± 0.07
R* (R)1.29 ± 0.04
log g* (cgs)4.345 ± 0.019
ρ*)0.626 ± 0.043
Teff (K)6400 ± 110
MP (MJup)0.50 ± 0.04
RP (RJup)1.41 ± 0.05
log gP (cgs)2.76 ± 0.04
ρPJ)0.18 ± 0.02
a (au)0.0506 ± 0.0009
TP, A = 0 (K)1560 ± 35
1SWASP J063324.26−232910.2
2MASS 06332426−2329103
RA = 06h33|$^{\rm m}24{{^{\rm s}_{.}}}26$|, Dec. = −23°29′10|${^{\prime\prime}_{.}}$|2 (J2000)
V mag = 10.3
Rotational modulation < 1 mmag (95 per cent)
pm (RA) −2.3 ± 0.9 (Dec.) 23.3 ± 1.2 mas yr−1
Stellar parameters from spectroscopic analysis.
Spectral typeF6
Teff (K)6380 ± 120
log g4.31 ± 0.08
|$v$| sin I (km s−1)12.4 ± 0.5
[Fe/H]+0.20 ± 0.12
log A(Li)2.80 ± 0.09
Age (lithium) (Gyr)0.5 ∼ 2
Age (gyro) (Gyr)|$0.9^{+1.3}_{-0.4}$|
Parameters from MCMC analysis.
P (d)3.585 722 ± 0.000 004
Tc (HJD) (UTC)245 6164.6934 ± 0.0002
T14 (d)0.113 ± 0.001
T12 = T34 (d)0.023 ± 0.001
|$\Delta F=R_{\rm P}^{2}$|/R|$_{*}^{2}$|0.0126 ± 0.0002
b0.736 ± 0.013
i (°)85.0 ± 0.2
K1 (km s−1)0.054 ± 0.004
γ (km s−1)42.6373 ± 0.0006
e0 (adopted) (<0.03 at 3σ)
M* (M)1.34 ± 0.07
R* (R)1.29 ± 0.04
log g* (cgs)4.345 ± 0.019
ρ*)0.626 ± 0.043
Teff (K)6400 ± 110
MP (MJup)0.50 ± 0.04
RP (RJup)1.41 ± 0.05
log gP (cgs)2.76 ± 0.04
ρPJ)0.18 ± 0.02
a (au)0.0506 ± 0.0009
TP, A = 0 (K)1560 ± 35

Errors are 1σ; limb-darkening coefficients were

(Trap |$z$|) a1 = 0.640, a2 = −0.172, a3 = 0.302, a4 = −0.174

(Euler r) a1 = 0.548, a2 = 0.238, a3 = −0.010, a4 = −0.067.

We also list proper motions from the UCAC4 catalogue of Zacharias et al. (2013). The motions and metallicities are all compatible with the stars being local thin-disc stars.

We searched the WASP photometry of each star for rotational modulations by using a sine-wave fitting algorithm as described by Maxted et al. (2011). We estimated the significance of periodicities by subtracting the fitted transit light curve and then repeatedly and randomly permuting the nights of observation. We found a marginally significant modulation in WASP-95 (see Section 4.2) but not in any of the other stars (with 95 per cent-confidence upper limits being typically 1 mmag).

4 SYSTEM PARAMETERS

The CORALIE RV measurements were combined with the WASP, EulerCAM and TRAPPIST photometry in a simultaneous Markov chain Monte Carlo (MCMC) analysis to find the system parameters. For details of our methods see Collier Cameron et al. (2007b). The limb-darkening parameters are noted in each table, and are taken from the 4-parameter non-linear law of Claret (2000).

For all of our planets the data are compatible with zero eccentricity, and hence, we imposed a circular orbit during the analysis (see Anderson et al. 2012 for the rationale for this). The upper limits on the eccentricity range from 0.02 (for the V = 9.5 WASP-99) to 0.27 (for the fainter, V = 12.2, WASP-96).

The fitted parameters were Tc, P, ΔF, T14, b and K1, where Tc is the epoch of mid-transit, P is the orbital period, ΔF is the fractional flux-deficit that would be observed during transit in the absence of limb darkening, T14 is the total transit duration (from first to fourth contact), b is the impact parameter of the planet's path across the stellar disc and K1 is the stellar reflex velocity semi-amplitude.

The transit light curves lead directly to stellar density but one additional constraint is required to obtain stellar masses and radii, and hence full parametrization of the system. Here we use the calibrations presented by Southworth (2011), based on masses and radii of eclipsing binaries.

For each system, we list the resulting parameters in Tables 2–8, and plot the resulting data and models in Figs 1–7. We also refer the reader to Smith et al. (2012) who present an extensive analysis of the effect of red noise in the transit light curves on the resulting system parameters.

Figure 1.

WASP-95b discovery data. Top: the WASP data folded on the transit period. Second panel: the binned WASP data with (offset) the follow-up transit light curves (ordered from the top as in Table 1) together with the fitted MCMC model. Third: the CORALIE radial velocities with the fitted model. Lowest: the bisector spans; the absence of any correlation with RV is a check against transit mimics.

Figure 2.

WASP-96b discovery data (as in Fig. 1).

Figure 3.

WASP-97b discovery data (as in Fig. 1).

Figure 4.

WASP-98b discovery data (as in Fig. 1).

Figure 5.

WASP-99b discovery data (as in Fig. 1).

Figure 6.

WASP-100b discovery data (as in Fig. 1).

Figure 7.

WASP-101b discovery data (as in Fig. 1).

As in past WASP papers we plot the spectroscopic Teff, and the stellar density from fitting the transit, against the evolutionary tracks from Girardi et al. (2000), as shown in Fig. 8.

Figure 8.

Evolutionary tracks on a modified H–R diagram (|$\rho _{*}^{-1/3}$| versus Teff). The red lines are for solar metallicity, [Fe/H] = 0, showing (solid lines) mass tracks with the labelled mass, and (dashed lines) isochrones for ages 0.1 and 1.4 Gyr. The green lines are the same but for a higher metallicity of [Fe/H] = +0.19 and ages 0.1, 2.5 and 6.3 Gyr. The blue lines are the same for a lower metallicity of [Fe/H] = −0.6, and ages 0.1 and 6.3 Gyr. Stars are colour coded to the nearest of these metallicities. The models are from Girardi et al. (2000).

Our method thus arrives at semi-independent parameters from the spectroscopic analysis (log g, Teff and [Fe/H] in the upper sections of Tables 2–8) and from the transit and radial velocities (leading directly to the stellar density and hence the parameters in the lower sections of the tables) and compares these to the evolutionary tracks (Fig. 8). The method does not force consistency between these three, and thus, the degree of consistency is a check on the results. Our results for these systems are generally consistent, given the quoted uncertainties, with the exceptions noted below.

4.1 WASP-95

WASP-95 is a V = 10.1, G2 star with an [Fe/H] of +0.14 ± 0.16. It may be slightly evolved, with an age of several billion years.

WASP-95 shows a possible rotational modulation at a period of 20.7 d and an amplitude of 2 mmag in the WASP data (Fig. 9), though this is seen in only one of the two years of data. The values of |$v$|sin i from the spectroscopic analysis (assuming that the spin axis is perpendicular to us) and the stellar radius from the transit analysis combine to a rotation period of 19.7 ± 3.9 d, which is compatible with the possible rotational modulation.

Figure 9.

The possible rotational modulation in the 2010 data of WASP-95 at a period of 20.7 d. The horizontal lines are the 10 per cent (dashed) and 1 per cent (dot–dashed) false-alarm probabilities. The upper plot is the periodogram (the y-scale being the fraction of the scatter in the data that is modelled by a sinusoidal variation, weighted by the standard errors); the lower plot is the data folded on the 20.7-d period where the blue points are the data binned and the green line is a fitted sinusoid.

WASP-95b is a typical hot Jupiter (Porb = 2.18 d, M = 1.2 MJup, R = 1.2 RJup).

4.2 WASP-96

WASP-96 is fainter G8 star, at V = 12.2, with an [Fe/H] of +0.14 ± 0.19. The planet is a typical hot Jupiter (Porb = 3.4 d, M = 0.5 MJup, R = 1.2 RJup).

4.3 WASP-97

WASP-97 is a V = 10.6, G5 star, with an above-solar metallicity of [Fe/H] of +0.23 ± 0.11. The planet is again a typical hot Jupiter (Porb = 2.1 d, M = 1.3 MJup, R = 1.1 RJup).

4.4 WASP-98

At V = 13.0, WASP-98 is at the faint end of the WASP-South/CORALIE survey. The spectral analysis has a lower S/N of only 40 and so is less reliable. It appears to be exceptionally metal poor ([Fe/H] = −0.6 ± 0.19) for a transit host star, though this needs to be confirmed with higher S/N spectra. The spectral analysis suggests G7, though the transit parameters lead to a lower mass of 0.7 M. The planet is a typical hot Jupiter having a high-impact transit (b = 0.7).

4.5 WASP-99

WASP-99 is the brightest host star reported here, at V = 9.5. Spectral analysis suggests that it is an F8 star with [Fe/H] of +0.21 ± 0.15. The transit analysis gives a lower log (g) than the spectroscopic analysis (by 2σ) and produces a higher mass (M = 1.5 M) and an expanded radius (R = 1.8 R). We have only one follow-up transit light curve for this system, and that has poor coverage of the egress, so the current parameters should be treated with caution.

The planet is relatively massive (M = 2.8 MJup), though its mass and radius are similar to those of many known planets. The transit of WASP-99b is the shallowest yet found by WASP-South, at 0.0041 ± 0.0002, along with that of WASP-72b at 0.0043 ± 0.0004 (Gillon et al. 2013).

4.6 WASP-100

WASP-100 is a V = 10.8, F2 star of solar metallicity. The planet is a typical bloated hot Jupiter (Porb = 2.8 d, M = 2.0 MJup, R = 1.7 RJup) with a high irradiation (see, e.g., West et al. 2014).

4.7 WASP-101

WASP-101 is a V = 10.3, F6 star with [Fe/H] = +0.20 ± 0.12. The analysis is compatible with an unevolved main-sequence star. The planet is a bloated, low-mass planet (Porb = 3.6 d, M = 0.50 MJup, R = 1.4 RJup).

5 COMPLETENESS

With the WASP survey now passing WASP-100 we can ask how complete the survey methods are and how many planets we are missing. A full discussion of selection effects is a large topic and is not attempted here, but we can use the HATnet project as a straightforward check on our techniques. The HATnet project (Bakos et al. 2004) is very similar in conception and hardware to WASP, and thus, whether a HAT planet is also detected by us gives an indication of how many we are overlooking.

Fig. 10 shows all HAT planets up to HAT-P-46 and HATS-3b (including three planets with both a HAT and a WASP number, owing to overlapping discoveries). For each we show the number of data points it has in the WASP survey and whether we also detect it. There is some level of subjectivity in claiming a detection, since all WASP candidates are scrutinized by eye, and thus two planets are shown as marginal detections. Most non-detections result from there being little or no WASP data (<6000 data points), but it is worthwhile to review the remaining seven cases.

Figure 10.

The number of WASP data points on each HAT planet as a function of magnitude. The red circles denote that the planet is detected by WASP, blue triangles marginal detections, black squares non-detections. Some planets are labelled by their HAT number.

HAT-P-1 (Bakos et al. 2007) is bright and has 14 000 points in WASP data. It is not detected owing to some excess noise in parts of our automated photometry, which prevents the transit-search algorithm from finding the transits. HAT-P-9b (Shporer et al. 2009) has V = 12.3 and there are 11 000 WASP points. There is excess noise in some of the WASP photometry, preventing the search algorithm finding the transit. These two are the worst failures of the WASP techniques applied to the HAT sample.

HAT-P-37 (Bakos et al. 2012) at V = 13.2 is fainter than any WASP planet, and also has a brighter eclipsing binary 68 arcsec away, which misleads the WASP search algorithms. HAT-P-38 (Sato et al. 2012) is relatively faint (V = 12.6) and there is relatively limited WASP data (9000 points).

Of the two marginal detections, HAT-P-19b (Hartman et al. 2011) has 12 000 WASP points but is faint (V = 12.9) and has an orbital period of 4.008 d. As a single-longitude survey, WASP's sampling hampers the finding of integer-day periods. HAT-P-15b (Kovács et al. 2010) is also below 12th magnitude (V = 12.2), and has relatively sparse coverage by WASP (9000 points), and also has a long orbital of 10.86 d, giving fewer transits than the typical 2–5-d hot Jupiters.

Thus, in summary, at brighter than V = 12.8 and given 10 000 WASP points (roughly two seasons of data) we fail to detect only 2 out of 23 HAT-discovered planets (note that the number 23 is a lower bound since it does not include independent discoveries by HAT of WASP planets). Thus, we conclude that, in well-covered regions of sky, the WASP-South survey techniques give fairly complete discoveries for the sort of planets findable by WASP-like surveys. That means hot Jupiters around stars in the magnitude range V = 9–13, and excluding crowded areas of sky such as the galactic plane. It also applies only to stars later than mid-F, since hotter stars do not give good RV signals.

The lower period limit of 0.8 d is likely a real cut-off in the distribution of hot Jupiters (e.g. Hellier et al. 2011b), since we routinely look for candidates down to periods of 0.5 d. This cut-off can be understood as the result of tidal inspiral destruction of short-period hot Jupiters (e.g. Matsumura, Peale & Rasio 2010). The longer period limit is primarily set by the amount of observational coverage, and our completeness will drop off above Porb ∼ 7 d, though this could increase to ‘warm’ Jupiters beyond ∼10 d as WASP continues to accumulate data.

The upper limit in planetary size is also likely a real feature of hot Jupiters, given the number of systems found with R = 1.8–2.0 RJup, but not above that range. The lower size limit of WASP discoveries is set primarily by red noise and so is harder to evaluate. Fig. 11 shows the transit depths of WASP planets, suggesting that we have a good discovery probability down to depths of ∼0.5 per cent in the magnitude range V = 9–12. This is sufficient for R ≳ 0.9 RJup given R* < 1.3 R, and ≳0.7 RJup given < 1.0 R, and thus is sufficient for most hot Jupiters.

Figure 11.

The transits depths of WASP planets as a function of host-star magnitude.

WASP-South is hosted by the South African Astronomical Observatory and we are grateful for their ongoing support and assistance. Funding for WASP comes from consortium universities and from the UK Science and Technology Facilities Council. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). MG and EJ are FNRS Research Associates. AHMJT is a Swiss National Science Foundation Fellow under grant PBGEP2-145594.

Fellow of the Swiss National Science Foundation.

REFERENCES

Anderson
D. R.
, et al. 
MNRAS
2012
, vol. 
422
 pg. 
1988
 
Bakos
G. À.
Noyes
R. W.
Kovács
G.
Stanek
K. Z.
Sasselov
D. D.
Domsa
I.
PASP
2004
, vol. 
116
 pg. 
266
 
Bakos
G. Á.
, et al. 
ApJ
2007
, vol. 
656
 pg. 
552
 
Bakos
G. Á.
, et al. 
AJ
2012
, vol. 
144
 pg. 
19
 
Barnes
S. A.
ApJ
2007
, vol. 
669
 pg. 
1167
 
Claret
A.
A&A
2000
, vol. 
363
 pg. 
1081
 
Collier Cameron
A.
, et al. 
MNRAS
2007a
, vol. 
375
 pg. 
951
 
Collier Cameron
A.
, et al. 
MNRAS
2007b
, vol. 
380
 pg. 
1230
 
Doyle
A. P.
, et al. 
MNRAS
2013
, vol. 
428
 pg. 
3164
 
Gillon
M.
, et al. 
A&A
2013
, vol. 
552
 pg. 
A82
 
Girardi
L.
Bressan
A.
Bertelli
G.
Chiosi
C.
A&AS
2000
, vol. 
141
 pg. 
371
 
Gray
D. F.
The Observation and Analysis of Stellar Photospheres
2008
3rd edn
Cambridge
Cambridge Univ. Press
Hartman
J. D.
, et al. 
ApJ
2011
, vol. 
726
 pg. 
52
 
Hellier
C.
, et al. 
Bouchy
F.
Díaz
R.
Moutou
C.
EPJ Web Conf. Vol. 11, Detection and Dynamics of transiting exoplanets
2011a
EDP Sciences, Les Ulis
pg. 
01004
 
Hellier
C.
, et al. 
A&A
2011b
, vol. 
535
 pg. 
L7
 
Hellier
C.
, et al. 
MNRAS
2012
, vol. 
426
 pg. 
739
 
Jehin
E.
, et al. 
The Messenger
2011
, vol. 
145
 pg. 
2
 
Kovács
G.
, et al. 
ApJ
2010
, vol. 
724
 pg. 
866
 
Lendl
M.
, et al. 
A&A
2012
, vol. 
544
 pg. 
A72
 
Matsumura
S.
Peale
S. J.
Rasio
F. A.
ApJ
2010
, vol. 
725
 pg. 
1995
 
Maxted
P. F. L.
, et al. 
PASP
2011
, vol. 
123
 pg. 
547
 
Pollacco
D.
, et al. 
PASP
2006
, vol. 
118
 pg. 
1407
 
Pollacco
D.
, et al. 
MNRAS
2008
, vol. 
385
 pg. 
1576
 
Sato
B.
, et al. 
PASJ
2012
, vol. 
64
 pg. 
97
 
Sestito
P.
Randlich
S.
A&A
2005
, vol. 
442
 pg. 
615
 
Shporer
A.
, et al. 
ApJ
2009
, vol. 
690
 pg. 
1393
 
Smith
A. M. S.
, et al. 
AJ
2012
, vol. 
143
 pg. 
81
 
Southworth
J.
MNRAS
2011
, vol. 
417
 pg. 
2166
 
West
R. G.
, et al. 
A&A
2014
 
preprint (arXiv:1310.5607)
Zacharias
N.
Finch
C. T.
Girard
T. M.
Henden
A.
Bartlett
J. L.
Monet
D. G.
Zacharias
M. I.
AJ
2013
, vol. 
145
 pg. 
44
 

APPENDIX A: RV TABLES

Table A1.

Radial velocities.

BJD − 240 0000RVσRVBisector
(UTC)(km s−1)(km s−1)(km s−1)
WASP-95:
561 24.789 766.11040.00440.0045
561 54.614 846.41460.0052−0.0179
561 58.837 556.46230.0051−0.0342
561 59.611 186.17450.0060−0.0398
561 75.663 106.25420.00570.0214
561 83.792 196.12230.0044−0.0028
561 84.632 416.38230.00430.0001
561 86.578 476.25020.0046−0.0180
561 90.647 636.14250.0045−0.0039
562 04.664 986.46440.0047−0.0101
562 10.599 356.26550.0046−0.0120
562 18.627 536.12440.0050−0.0325
562 49.520 676.11490.0045−0.0273
564 21.910 576.12430.0061−0.0141
BJD − 240 0000RVσRVBisector
(UTC)(km s−1)(km s−1)(km s−1)
WASP-95:
561 24.789 766.11040.00440.0045
561 54.614 846.41460.0052−0.0179
561 58.837 556.46230.0051−0.0342
561 59.611 186.17450.0060−0.0398
561 75.663 106.25420.00570.0214
561 83.792 196.12230.0044−0.0028
561 84.632 416.38230.00430.0001
561 86.578 476.25020.0046−0.0180
561 90.647 636.14250.0045−0.0039
562 04.664 986.46440.0047−0.0101
562 10.599 356.26550.0046−0.0120
562 18.627 536.12440.0050−0.0325
562 49.520 676.11490.0045−0.0273
564 21.910 576.12430.0061−0.0141

Bisector errors are twice RV errors. Data for other planets are online only.

Table A1.

Radial velocities.

BJD − 240 0000RVσRVBisector
(UTC)(km s−1)(km s−1)(km s−1)
WASP-95:
561 24.789 766.11040.00440.0045
561 54.614 846.41460.0052−0.0179
561 58.837 556.46230.0051−0.0342
561 59.611 186.17450.0060−0.0398
561 75.663 106.25420.00570.0214
561 83.792 196.12230.0044−0.0028
561 84.632 416.38230.00430.0001
561 86.578 476.25020.0046−0.0180
561 90.647 636.14250.0045−0.0039
562 04.664 986.46440.0047−0.0101
562 10.599 356.26550.0046−0.0120
562 18.627 536.12440.0050−0.0325
562 49.520 676.11490.0045−0.0273
564 21.910 576.12430.0061−0.0141
BJD − 240 0000RVσRVBisector
(UTC)(km s−1)(km s−1)(km s−1)
WASP-95:
561 24.789 766.11040.00440.0045
561 54.614 846.41460.0052−0.0179
561 58.837 556.46230.0051−0.0342
561 59.611 186.17450.0060−0.0398
561 75.663 106.25420.00570.0214
561 83.792 196.12230.0044−0.0028
561 84.632 416.38230.00430.0001
561 86.578 476.25020.0046−0.0180
561 90.647 636.14250.0045−0.0039
562 04.664 986.46440.0047−0.0101
562 10.599 356.26550.0046−0.0120
562 18.627 536.12440.0050−0.0325
562 49.520 676.11490.0045−0.0273
564 21.910 576.12430.0061−0.0141

Bisector errors are twice RV errors. Data for other planets are online only.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Tables A1–A3. Radial velocities (Supplementary Data).

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the paper.

Supplementary data