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In this friendly survey, we look at some interactions be-
tween a certain class of infinite matrices called Riordan
matrices and the class of combinatorial objects called
lattice paths. There are a variety of interesting alge-
braic and combinatorial relationships between Riordan
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matrices and lattice path enumeration problems. This ar-
ticle attempts to introduce the reader to the concepts and
techniques that may be used to explore these relationships.

The lattice paths considered in this article are presented
as combinatorial objects which are subject to specific con-
struction rules, and our interest is to enumerate and clas-
sify them with counting sequences. Riordan matrices are
infinite matrices whose columns can be associated with a
certain kind of sequence of generating functions. There are
many interesting Riordan matrices that contain column
entries or row sums associated with well-known count-
ing numbers, such as the binomial coefficients, the bal-
lot, Catalan, Motzkin, Schröder, Fine, Delannoy, and RNA
numbers, and other counting numbers that can be found
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in Sloane’s On-line Encyclopedia of Integer Sequences
[S1]. The aim of this article is to introduce the reader to
Riordan matrices and to present examples of solutions to
particular lattice path counting problems, where the lattice
paths are enumerated by the column entries or row sums
of Riordan matrices.

Algebraic combinatorics involves the use of techniques
from algebra, topology, and geometry in the solution of
combinatorial problems. Because of this interplay with
many fields of mathematics, algebraic combinatorics is an
area in which a wide variety of ideas andmethods come to-
gether. Riordan arrays appear in algebraic combinatorics
and are useful for proving combinatorial sums and iden-
titites. They also appear in various counting problems in
enumerative combinatorics. A certain subset of Riordan
arrays called proper Riordan arrays, otherwise known as Ri-
ordan matrices, form the Riordan group, an infinite non-
commutative matrix group, which is the main combina-
torial device reported in this article. The Riordan group
can be characterized as being algebraic and combinatorial.
Thus, as a subfield of enumerative and algebraic combi-
natorics, the Riordan group brings together a wide variety
of combinatorial methods and mathematical ideas. There
are also some interesting mathematical contributions out-
side of combinatorics that touch on geometry, group the-
ory, Lie algebra and groups, functional analysis, represen-
tation theory, and queuing theory. For a more thorough
survey of contributions of the Riordan group to other areas
of mathematics and combinatorics, see the monograph by
Shapiro et al. [SSB+].

The algebraic concepts subsequently reported in this ar-
ticle involve finding inverse relations and multiplying, in-
verting, and manipulating Riordan matrices. The concepts
covered herein involve using recurrence relations, gener-
ating functions, combinatorial statistics and explicit bijec-
tions to solve certain lattice path counting problems. How-
ever, the authors do not claim to solve all lattice path
counting problems associated with Riordan matrices.

The article proceeds with an overview of the type of lat-
tice paths under consideration, followed by an elementary
introduction to generating functions. Riordan arrays are
then formally introduced, followed by a section devoted to
the algebra of the Riordan group. The last two sections of
the paper feature specific demonstrations of how the Rior-
dan group can be applied to lattice path enumeration prob-
lems, especially as related to generalized Catalan paths.
Lattice paths. The subject of counting paths (walks) on
the lattice in Euclidean space is one of the most important
areas of combinatorics. The lattice paths described in this
article are defined on the integral lattice ℤ𝑑, where 𝑑 ≥ 1,
under the conditions that each path starts at some fixed
origin, moves according to certain steps under specified
rules and restrictions, and never crosses or touches certain

coordinate axes or hyperplanes. For excellent introduc-
tions to lattice path combinatorics and enumeration, see
the surveys by Humphreys [H] and Krattenthaler [K].

A lattice path is a sequence of contiguous (unit) steps
which traverses the 𝑑-dimensional integral lattice ℤ𝑑.
More precisely, a lattice path in ℤ𝑑 with 𝑘 ≥ 1 unit steps is
a sequence ́𝑠1, ́𝑠2, … , ́𝑠𝑘 ∈ ℤ𝑑 such that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘,
́𝑠𝑖 − ́𝑠𝑖−1 ∈ ́𝑆 ⊂ ℤ𝑑. In this case, we refer to ́𝑆 as a step
set. We will often refer to a lattice path simply as a path,
where the path is encoded by a word based on an alphabet
containing ́𝑆. Geometrically, a lattice path is represented
by the edges between the consecutive vertices of the path.
A path with no steps is a point. The length of a path is the
number of unitary steps.

In this article, the paths are considered to be in 𝑑-
dimensional Euclidean space and never pass below a spec-
ified hyperplane. Typically, in ℤ2, the paths never pass be-
low the 𝑥-axis. The height of a path corresponds to the 𝑦
value of the endpoint (𝑥, 𝑦) of the path. In three dimen-
sions the paths are considered to be in three-dimensional
Euclidean space and often never pass below the 𝑥𝑦-plane.
The height of each path corresponds to the 𝑧 value of the
endpoint (𝑥, 𝑦, 𝑧) of the path. Throughout this article, we
will focus mainly on lattice paths in the plane, i.e., 𝑑 = 2.
However, the step sets of particular higher dimensional
paths defined in [N2] will bementioned in the last section.
There are many types of path problems as well as methods
andmodels for finding their solutions. Thus, there is a vast
amount of literature on this topic from the self-avoiding
walk problem to lattice path problems with infinite step
sets.
Examples of lattice paths. This article will focus mainly on
Dyck (Catalan) paths and related paths, such as Motzkin
and Schröder paths, with a few other paths discussed
briefly.

Example 1 (Dyck Paths). ADyck (Catalan) path is a lattice
path in the first quadrant of ℤ2 which begins at the origin
(0, 0), ends at (2𝑛, 0), has the step set ́𝑆 = {(1, 1) , (1, −1)},
and never goes below the 𝑥-axis. These paths can be de-
scribed as paths that consist of unit up steps with slope
1, denoted by 𝑈, and unit down steps with slope −1, de-
noted by 𝐷. We refer to 𝑛 as the semi-length of the path. A
Dyck path of semi-length 𝑛 is called a Dyck 𝑛-path. These
paths are counted by the Catalan numbers, which are de-
fined in the next section. The 5 possible paths of length
6 are depicted in Figure 1 and can also be encoded by the
words

𝑈𝑈𝑈𝐷𝐷𝐷,𝑈𝑈𝐷𝑈𝐷𝐷,𝑈𝑈𝐷𝐷𝑈𝐷,
𝑈𝐷𝑈𝑈𝐷𝐷,𝑈𝐷𝑈𝐷𝑈𝐷.

Example 2 (Motzkin Paths). A Motzkin path of length 𝑛
is a lattice path in ℤ2 that begins at the origin (0, 0), ends
at (𝑛, 0), has step set ́𝑆 = {(1, 1), (1, 0), (1, −1)} and never
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Figure 1. The 5 Dyck paths of semi-length 3.

Figure 2. The 4 Motzkin paths of length 3.

passes below the 𝑥-axis. These paths consist of unit up
steps with slope 1 denoted by 𝑈, unit down steps with
slope−1 denoted by𝐷, and unit horizontal (or level) steps
with slope 0 denoted by 𝐻. Motzkin paths are counted
by the Motzkin numbers that are defined in the next sec-
tion. The 4 possible paths of length 3 are shown in Figure
2 and the 9 possible paths of length 4 can be encoded by
the words

𝑈𝑈𝐷𝐷,𝑈𝐻𝐻𝐷,𝑈𝐷𝑈𝐷,𝑈𝐷𝐻𝐻,𝑈𝐻𝐷𝐻,
𝐻𝑈𝐷𝐻,𝐻𝑈𝐻𝐷,𝐻𝐻𝑈𝐷,𝐻𝐻𝐻𝐻.

Example 3 (Schröder Paths). A Schröder path is a path in
the first quadrant of ℤ2 that begins at the origin (0, 0), ends
at (2𝑛, 0), with step set ́𝑆 = {(1, 1) , (1, −1) , (2, 0)} and never
passes below the 𝑥-axis. These paths consist of 𝑈 steps,
𝐷 steps, and double horizontal or level steps denoted by
𝐻. These paths are counted by the large Schröder numbers
that are defined in the next section. The 6 possible paths
of length 4 are depicted in Figure 3.

Figure 3. The 6 Schröder paths of length 4.

Motzkin, Dyck, and Schröder paths are interesting com-
binatorial objects and they appear in a wide variety of
combinatorial problems. Riordan arrays have been con-
structed to study these paths and many other types of lat-
tice path counting problems.
Generating functions. In order to understand Riordan
matrices, some working knowledge of generating func-
tions is needed. In this article, Riordan arrays are defined
in terms of ordinary generating functions.

Given a sequence ⟨𝑏𝑛⟩𝑛≥0 of elements of a commutative
ring, the ordinary generating function (𝐺𝐹) for ⟨𝑏𝑛⟩𝑛≥0 is
the formal power series

𝑏 (𝑧) = ∑
𝑛≥0

𝑏𝑛𝑧𝑛 = 𝑏0 + 𝑏1𝑧 + 𝑏2𝑧2 +⋯

where 𝑧 is an indeterminate (or auxiliary variable). In
some instances “aerated” 𝐺𝐹𝑠 are of interest. An aerated
𝐺𝐹 is a 𝐺𝐹 of the form

𝑏 (𝑧2) = ∑
𝑛≥0

𝑏𝑛𝑧2𝑛 = 𝑏0 + 𝑏1𝑧2 + 𝑏2𝑧4 +⋯

where ⟨𝑏0, 0, 𝑏1, 0, 𝑏2, …⟩ is the associated sequence of aer-
ated coefficients. In this article, we will only refer to the
concept of aerated 𝐺𝐹𝑠 once in Example 13, but otherwise
they may be encountered frequently in some lattice path
enumeration problems.

Note that since 𝐺𝐹𝑠 are defined algebraically as for-
mal power series, and not as real-valued functions, se-
ries convergence is not necessary for the existence of 𝐺𝐹𝑠.
Nonetheless, convergence of 𝐺𝐹𝑠 is sometimes necessary
for finding exact formulae and asymptotic estimates of the
𝑛th term of a sequence. See Wilf [W2], for more details on
algebraic and analytic properties of 𝐺𝐹𝑠.

Sequences of coefficients in combinatorics are some-
times called counting sequences and are often computed
by recurrence relations. A recurrence relation (or recur-
sion) recursively defines a sequence where the 𝑛th term
of the sequence is expressed in terms of some previous 𝑘
terms, 𝑘 < 𝑛. In turn, 𝐺𝐹𝑠 can be derived from their re-
lated recurrence relation. The famed Fibonacci numbers
are computed by the following recurrence relation

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1, 𝑛 ≥ 1
with initial conditions 𝐹0 = 𝐹1 = 1. The 𝐺𝐹 for this se-
quence is perhaps one of the most recognized and studied
𝐺𝐹𝑠:

𝐹 (𝑧) = ∑
𝑛≥0

𝐹𝑛𝑧𝑛 = 1 + 𝑧 + 2𝑧2 + 3𝑧3 +⋯ = 1
1 − 𝑧 − 𝑧2

where ⟨𝐹0, 𝐹1, 𝐹2, …⟩ = ⟨1, 1, 2, …⟩ are the popular Fibonacci
numbers, which count various combinatorial objects in-
cluding lattice paths. The 𝑛th Fibonacci number is given
by

𝐹𝑛 = (𝛽𝑛+1 − 𝛼𝑛+1) /√5
where 𝛼 = (1 − √5) /2, 𝛽 = (1 + √5) /2, and 𝛽 is known as
the golden ratio.

Interestingly, with the same recurrence relation, if the
initial conditions are ̂𝐹0 = 0, ̂𝐹1 = 1, then

̂𝐹𝑛 = (𝛽𝑛 − 𝛼𝑛) /√5 and ̂𝐹 (𝑧) = 𝑧/ (1 − 𝑧 − 𝑧2) .
Some suggested exercises for the reader are to use the re-
cursion to derive 𝐹 (𝑧) , and then to use 𝐹 (𝑧) to derive the
exact forumula of 𝐹𝑛 given above.

We now present three examples of 𝐺𝐹𝑠 that are com-
monly encountered in lattice path enumeration.

Example 4. The Catalan 𝐺𝐹 is defined by

𝑐 (𝑧) = ∑
𝑛≥0

𝑐𝑛𝑧𝑛 = 1 + 𝑧 + 2𝑧2 + 5𝑧3 +⋯

= 1 − √1 − 4𝑧
2𝑧

where ⟨𝑐𝑛⟩𝑛≥0 = ⟨1, 1, 2, 5, …⟩ are the Catalan numbers and

𝑐𝑛 = 1/ (𝑛 + 1) ( 2𝑛
𝑛
) is the 𝑛th Catalan number. They are
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computed recursively by 𝑐0 = 1,

𝑐𝑛+1 =
𝑛
∑
𝑘=0

𝑐𝑘𝑐𝑛−𝑘, 𝑛 ≥ 1.

The Catalan numbers appear in many combinatorial prob-
lems and have a variety of algebraic applications [S2].

Next, we present the Motzkin and Schröder 𝐺𝐹𝑠 which
have lattice path interpretations that are related to the Cata-
lan numbers.

Example 5. The Motzkin 𝐺𝐹 is defined by

𝑚(𝑧) = ∑
𝑛≥0

𝑚𝑛𝑧𝑛 = 1 + 𝑧 + 2𝑧2 + 4𝑧3 +⋯

= 1 − 𝑧 − √1 − 2𝑧 − 3𝑧2
2𝑧2

where ⟨𝑚𝑛⟩𝑛≥0 = ⟨1, 1, 2, 4, …⟩ are the Motzkin numbers.
They are computed recursively by 𝑚0 = 1, 𝑚1 = 1,

𝑚𝑛 = 𝑚𝑛−1 +
𝑛−2
∑
𝑘=0

𝑚𝑘𝑚𝑛−2−𝑘, 𝑛 ≥ 2

and are connected to the Catalan numbers by

𝑚𝑛 =
⌊𝑛/2⌋
∑
𝑘=0

( 𝑛2𝑘)𝑐𝑘

where ⌊𝑥⌋ denotes the floor of 𝑥 (i.e., the greatest integer
≤ 𝑥).

Example 6. The Schröder 𝐺𝐹 is defined by

̃𝑠 (𝑧) = ∑
𝑛≥0

̃𝑠𝑛𝑧𝑛 = 1 + 2𝑧 + 6𝑧2 + 22𝑧3 +⋯

= 1 − 𝑧 − √1 − 6𝑧 + 𝑧2
2𝑧

where ⟨ ̃𝑠𝑛⟩𝑛≥0 = ⟨1, 2, 6, 22, …⟩ are the large Schröder num-
bers. They are computed recursively by ̃𝑠0 = 1, ̃𝑠2 = 2,

̃𝑠𝑛 = 3 ̃𝑠𝑛−1 +
𝑛−2
∑
𝑘=1

̃𝑠𝑘 ̃𝑠𝑛−1−𝑘, 𝑛 ≥ 2

and are connected to the Catalan numbers by

̃𝑠𝑛 =
𝑛
∑
𝑘=0

(2𝑛 − 𝑘
𝑘 )𝑐𝑛−𝑘, 𝑛 ≥ 0.

The Catalan, Motzkin, and Schröder 𝐺𝐹𝑠 appear in
many combinatorial problems. For more properties and
examples of 𝐺𝐹𝑠 and recurrence relations, see [W2].

What are Riordan arrays? The Riordan array concept was
introduced in 1991 by Shapiro et al. [SGWW]. A Rior-
dan array is a special infinite lower-triangularmatrix where
the column entries consist of coefficients of certain formal
power series. Representing infinite matrices by coefficients
of (formal) power series is not new and goes back to pa-
pers by Schur [S] and Jabotinsky [J] on Faber polynomials.
Thus, Riordan arrays depend upon certain formal power
series and 𝐺𝐹𝑠.

Suppose 𝑔 (𝑧) = 𝑔0 + 𝑔1𝑧 + 𝑔2𝑧2 +⋯ and 𝑓 (𝑧) = 𝑓1𝑧 +
𝑓2𝑧2+⋯ ,where 𝑔0 ≠ 0 and 𝑔 (𝑧) and 𝑓 (𝑧) are formal power
series ℂ [[ℤ]]. Then the infinite array

𝐿 = (𝑙𝑛,𝑘)𝑛,𝑘≥0 ,

with entries in ℂ is called a Riordan array if the ordinary
generating function for its 𝑘th column is the Cauchy (con-
volution) product of 𝑔(𝑧) and 𝑓𝑘(𝑧). That is, 𝐿 is a Riordan
array if the 𝐺𝐹 for the sequence ⟨𝑙𝑛,𝑘⟩𝑛≥0 of numbers in the
𝑘th column of 𝐿 is

𝑔 (𝑧) ⋅ 𝑓𝑘 (𝑧)
for all 𝑘 ≥ 0. The constant coefficient 𝑔0 = 1 is commonly
used for combinatorial convenience. Note that 𝑔 (𝑧) and
𝑓 (𝑧) are sometimes abbreviated, respectively, as 𝑔 and 𝑓.

Since the column-generating functions of a Riordan ar-
ray 𝐿 form a geometric sequence 𝑔, 𝑔𝑓, … , 𝑔𝑓𝑘, … , we may
denote the Riordan array 𝐿 in pair form as

𝐿 = (𝑔 (𝑧) , 𝑓 (𝑧)) = (
∣ ∣ ∣
𝑔 𝑔𝑓 𝑔𝑓2 ⋯
∣ ∣ ∣

) .

The (𝑛, 𝑘)-th or generic element of 𝐿 can be obtained by
extracting the 𝑛th coefficient of 𝑔𝑓𝑘 and obtaining

𝑙𝑛,𝑘 = [𝑧𝑛] 𝑔 (𝑧) ⋅ 𝑓𝑘 (𝑧)
where [𝑧𝑛] denotes the operator for extracting the 𝑛th coef-
ficient of a generating function. For instance, [𝑧4] 𝐹 (𝑧) =
5 = 𝐹4. For rules that govern the actions of [𝑧𝑛], see [SSB+].
The rules are sometimes called the method of coefficients
and sometimes involve using the binomial theorem and
Lagrange inversion formula to extract the coefficients.

Following the definition of 𝐿 and if, in addition, 𝑓1 ≠ 0
is satisfied, then 𝐿 is invertible under matrix multiplica-
tion. The invertible Riordan arrays are called proper Ri-
ordan arrays or simply Riordan matrices. We note that
Riordan matrices are also known as “recursive matrices”
in the umbral calculus [MRSV]. Riordan matrices (arrays)
are also defined by coefficients of exponential generating
functions where one encounters the well-known derange-
ment, partition (Bell), Bernoulli, Cauchy, Euler, and Stir-
ling numbers; however, they are not described in this pa-
per. For more information and examples of Riordan arrays
and exponential formal power series see [B].
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Examples of Riordan arrays. Here we provide examples of
Riordan arrays related to the Pascal, Catalan, Motzkin, and
RNA sequences.

Example 7 (Pascal’s Triangle). Pascal triangle, the most
popular example, denoted by 𝑃 contains the well-known
binomial coefficients. When written in infinite lower-
triangular form,

𝑃 = ( 1
1 − 𝑧 ,

𝑧
1 − 𝑧) =

⎛
⎜
⎜
⎜
⎜
⎝

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

where

𝑝𝑛,𝑘 = [𝑧𝑛] (1/ (1 − 𝑧)) (𝑧/ (1 − 𝑧))𝑘 = (𝑛𝑘)

is the (𝑛, 𝑘)-th element of 𝑃. More generally, for integers
𝑡 ≥ 1

𝑃𝑡 = (1/ (1 − 𝑡𝑧) , 𝑧/ (1 − 𝑡𝑧))

is a generalized Pascal-Riordan matrix with generic ele-
ment (𝑛

𝑘
) 𝑡𝑛−𝑘. The entries of 𝑃 count certain lattice paths

in ℤ2 with horizontal and diagonal steps that do not go
above the line 𝑦 = 𝑥 or below the 𝑥−axis [SSB+]. A sug-
gested exercise for the reader is to show that the entries
of 𝑃𝑡 count the lattice paths in ℤ𝑡 with different kinds of
horizontal steps that come in 𝑡 different colors.

Example 8 (Aigner-Catalan Array). The Aigner-Catalan ar-
ray denoted by 𝐶 contains the well-known ballot numbers.
𝐶 is defined as

𝐶 = (𝑐 (𝑧) , 𝑧𝑐 (𝑧)) =

⎛
⎜
⎜
⎜
⎜
⎝

1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

where the leftmost column entries are the Catalan num-
bers, 𝑐 (𝑧) is the Catalan 𝐺𝐹,

̃𝑐𝑛,𝑘 = [𝑧𝑛] 𝑐 (𝑧) (𝑧𝑐 (𝑧))𝑘 = 𝑘 + 1
𝑛 + 1(

2𝑛 − 𝑘
𝑛 − 𝑘 )

is the (𝑛, 𝑘)-th element of 𝐶, and ̃𝑐𝑛,𝑘 are the well-known
ballot numbers. The entries of𝐶 count certain lattice paths
in ℤ2 with horizontal and vertical steps that are restricted
to lie on or below the line 𝑦 = 𝑥 in the coordinate plane
[SSB+].

Example 9 (Shapiro-Catalan Array). The Shapiro-Catalan
array denoted by 𝐵 is defined as

𝐵 = (𝑐2 (𝑧) , 𝑧𝑐2 (𝑧)) =

⎛
⎜
⎜
⎜
⎜
⎝

1
2 1
5 4 1
14 14 6 1
42 48 27 8 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

where the leftmost column entries are the Catalan num-
bers (minus the leading 1) and

𝑏𝑛,𝑘 = [𝑧𝑛] 𝑐2 (𝑧) (𝑧𝑐2 (𝑧))𝑘 = 𝑘 + 1
𝑛 + 1(

2𝑛 + 2
𝑛 − 𝑘 )

is the (𝑛, 𝑘)-th element of 𝐵. The entries of 𝐵 count cer-
tain pairs of non-intersecting lattice paths in ℤ2 in the first
quadrant.

Example 10 (Radoux-Catalan Array). The Radoux-Catalan
array denoted by ̃𝐴 is defined as

̃𝐴 = (𝑐 (𝑧) , 𝑧𝑐2 (𝑧)) =

⎛
⎜
⎜
⎜
⎜
⎝

1
1 1
2 3 1
5 9 5 1
14 28 20 7 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

where the leftmost column entries are again the Catalan
numbers and

𝑎𝑛,𝑘 = [𝑧𝑛] 𝑐 (𝑧) (𝑧𝑐2 (𝑧))𝑘

= 2𝑘 + 1
2𝑛 + 1(

2𝑛 + 1
𝑛 − 𝑘 )

is the (𝑛, 𝑘)-th element of ̃𝐴. The entries of ̃𝐴 count certain
Dyck paths [A1].

The Catalan arrays ̃𝐴, 𝐵, and𝐶 are of interest and appear
in many combinatorial problems.

Example 11 (RNA Array [N1]). The RNA array, denoted by
𝑅∗, is defined as

𝑅∗ = (𝑠 (𝑧) , 𝑧𝑠 (𝑧)) =

⎛
⎜
⎜
⎜
⎜
⎝

1
1 1
1 2 1
2 3 3 1
4 6 6 4 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

where the leftmost column entries are the RNA numbers
(or generalized Catalan numbers) which count RNA sec-
ondary structures from molecular biology [S2], [W1]. The
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𝐺𝐹 for the RNA numbers is

𝑠 (𝑧) = ∑
𝑛≥0

𝑠𝑛𝑧𝑛 = 1 + 𝑧 + 𝑧2 +⋯

= 1 − 𝑧 + 𝑧2 −√1 − 2𝑧 − 𝑧2 − 2𝑧3 + 𝑧4
2𝑧2 ,

and ⟨𝑠𝑛⟩𝑛≥0 = ⟨1, 1, 1, 2, 4, 8, …⟩ [W1]. The RNA numbers
are computed recursively

𝑠𝑛+1 = 𝑠𝑛 +
𝑛
∑
𝑘=1

𝑠𝑘−1𝑠𝑛−𝑘, 𝑛 ≥ 2

with 𝑠0 = 𝑠1 = 𝑠2 = 1. They are also computed by the
following sum

∑
𝑘≥1

1
𝑛 − 𝑘(

𝑛 − 𝑘
𝑘 )(𝑛 − 𝑘

𝑘 − 1) (𝑘 < 𝑛) .

The entries of 𝑅∗ count certain Motzkin paths with certain
restrictions [N1]. A problem of interest is to find a nice
form for the generic element of 𝑅∗

𝑠𝑛,𝑘 = [𝑧𝑛] 𝑠 (𝑧) (𝑧𝑠 (𝑧))𝑘 .
Example 12 (An Improper Riordan Array). The array be-
low denoted by 𝑄∗ is an example of an improper Riordan
array [MRSV]

𝑄∗ = (𝑞 (𝑧) , 𝑧2𝑞 (𝑧)) =

⎛
⎜
⎜
⎜
⎜
⎝

1
1 0
2 1 0
5 2 0 0
12 5 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

where 𝑞 (𝑧) is the generating function
𝑞 (𝑧) = ∑

𝑛≥0
𝑞𝑛𝑧𝑛 = 1 + 𝑧 + 2𝑧2 + 5𝑧3 +⋯

= 1 − 𝑧 − √1 − 2𝑧 − 3𝑧2 − 4𝑧3
2𝑧2 (1 + 𝑧) .

Note that [𝑧1] 𝑧2𝑞 (𝑧) = 0. So, 𝑄∗ is not a proper Riordan
array. However, the entries of𝑄∗ count certain lattice paths
in ℤ2 with steep and shallow diagonal steps [MRSV].

We conclude the examples by noting some well-known
combinatorial triangles that are not (ordinary) Riordan ar-
rays, as defined in this article. The Narayana array denoted
by ̃𝑇 contains the Narayana numbers ̃𝑇𝑛,𝑘, 0 ≤ 𝑘 < 𝑛. ̃𝑇
is typically given as an example of an invertible, infinite
lower-triangular array that is not a Riordan array.

̃𝑇 =

⎛
⎜
⎜
⎜
⎜
⎝

1
1 1
1 3 1
1 6 6 1
1 10 20 10 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

and the generic element is

̃𝑇𝑛,𝑘 =
1
𝑛(
𝑛
𝑘)(

𝑛
𝑘 + 1).

̃𝑇 is not a Riordan array since the 𝑘th column is not de-
fined by ordinary generating functions of the form 𝑔𝑓𝑘. Al-
though ̃𝑇 is not Riordan, there are interesting combinato-
rial interpretations of ̃𝑇: the entries count the total number
of Dyck 𝑛-paths with 𝑘 peaks, the row sums are the Catalan
numbers 𝑐𝑛+1, and the diagonal sums are the RNA num-
bers 𝑠𝑛 (minus the leading 1). Suggested exercises for the
reader are to verify the row sums and diagonal sums. (The
diagonal sums, sometimes called slices, move upward left-
to-right within the array in a north-east direction.)

Finally, we make a brief note of the Stirling triangle,
which contains the Stirling numbers of the second kind
𝑆(𝑛, 𝑘), the number of partitions of an 𝑛-set into 𝑘 blocks
(nonempty subsets). The Stirling triangle is not a Riordan
array, as we have defined in this article. However, since the
exponential generating function for 𝑆(𝑛, 𝑘) is of the form
𝑔𝑓𝑘/𝑘!where 𝑔 and 𝑓 are exponential generating functions
and 𝑘 ≥ 0, the Stirling triangle is a so-called exponential
Riordan array. For more information on exponential gen-
erating functions and exponential Riordan arrays, see [B].
Algebra of the Riordan group. As mentioned earlier, the
set of Riordan matrices form the Riordan group, which we
will define and discuss in more detail in this section. We
note that the Riordan group is also known as the Sheffer
or 1-umbral group [JLN]. See [SSB+] for a connection be-
tween the Sheffer and Riordan groups. For an excellent
introduction to the Riordan group and Riordan arrays, see
Barry [4].

We now introduce Riordan matrix multiplication, start-
ing with multiplication by a column vector. If 𝐿 =
(𝑔(𝑧), 𝑓(𝑧)) is a Riordan matrix and ℎ (𝑧) is the 𝐺𝐹 associ-
ated with the infinite column vector ℎ = (ℎ𝑘)

⊤
𝑘≥0, where ⊤

denotes the transpose, then one can show that the matrix
product 𝐿ℎ is an infinite column vector whose associated
𝐺𝐹 is 𝑔 (𝑧) ⋅ ℎ (𝑓 (𝑧)) , where 𝑔 ⋅ ℎ denotes a Cauchy prod-
uct and ℎ (𝑓) denotes composition of 𝐺𝐹𝑠 [SGWW]. This
statement is known as the fundamental theorem of Rior-
dan arrays (FTRA) and it allows us to definemultiplication
of Riordan arrays in the following way.

Suppose (𝑔(𝑧), 𝑓(𝑧)) is a Riordan matrix and ℎ(𝑧) is a
𝐺𝐹. We define the product

(𝑔(𝑧), 𝑓(𝑧)) ⊗ ℎ (𝑧) ≔ 𝑔 (𝑧) ⋅ ℎ (𝑓 (𝑧)) .
Here, we have introduced the⊗ symbol for use when writ-
ing the matrix product of a Riordan matrix, in terms of
its associated generating function pair, and a column vec-
tor, in terms of its associated generating function. Note
that the product represents the usual matrix multiplica-
tion. Next, we give some examples of properties of
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Riordan matrix-vector multiplication before moving on to
multiplication of two Riordan matrices.

For example, the product of Pascal’s Triangle 𝑃 and
ℎ (𝑧) = 1/ (1 − 𝑧) associated with column vector (1, 1, …)⊤
is

𝑃 ⊗ ℎ (𝑧) = (1/ (1 − 𝑧) , 𝑧/ (1 − 𝑧)) ⊗ 1/ (1 − 𝑧)
= 1/ (1 − 2𝑧) .

This example is the well-known result where the row sums
of 𝑃 are

[𝑧𝑛] 1/ (1 − 2𝑧) = 2𝑛 for 𝑛 ≥ 0.
We now give some important 𝐺𝐹𝑠 of various sums of

Riordan matrices that are obtained by multiplying by dif-
ferent column vectors [SSB+].

Row sums:
(𝑔 (𝑧) , 𝑓 (𝑧)) ⊗ 1/ (1 − 𝑧) = 𝑔 (𝑧) / (1 − 𝑓 (𝑧))
Diagonal sums:
(𝑔 (𝑧) , 𝑧𝑓 (𝑧)) ⊗ 1/ (1 − 𝑧) = 𝑔 (𝑧) / (1 − 𝑧𝑓 (𝑧))
Alternate sums:
(𝑔 (𝑧) , 𝑓 (𝑧)) ⊗ 1/ (1 + 𝑧) = 𝑔 (𝑧) / (1 + 𝑓 (𝑧))
Weighted sums:

(𝑔 (𝑧) , 𝑓 (𝑧)) ⊗ 𝑧/ (1 − 𝑧)2 = 𝑔 (𝑧) 𝑓 (𝑧)
(1 − 𝑓 (𝑧))2

Recall that diagonal sums move upward left-to-right
within the array in a north-east direction. For instance, in
𝑃 the fifth diagonal sum is 8 = 1+4+3+0+0+0. The diag-
onal sums of all entries of a Riordan array 𝐿 = (𝑔(𝑧), 𝑓(𝑧))
are computed by the row sums of the “vertically stretched”
Riordan array (𝑔 (𝑧) , 𝑧𝑓 (𝑧)). Vertically stretched Riordan
arrays are not invertible because in this case the first three
coefficients of 𝑧𝑓(𝑧) are 𝑓0 = 0, 𝑓1 = 0 and 𝑓2 ≠ 0. See
Example 12 for an example of a vertically stretched Rior-
dan array, and for a broader introduction to stretched Ri-
ordan arrays, see [4]. Some suggested exercises are to show
that the diagonal sums of 𝑃 are the Fibonacci numbers and
the weighted row sums starting with leading coefficent 1
are given by the 𝐺𝐹 𝑔 (𝑧) / (1 − 𝑓 (𝑧))2. Weighted row sums
correspond to the first moments or the expected value of
each row of the Riordan matrix. For example, the first mo-
ments of 𝑅∗ are the bisected Fibonacci numbers given by
𝐺𝐹 1/ (1 − 3𝑧 + 𝑧2) [N1]. A straight forward calculation
shows

(𝑠 (𝑧) , 𝑧𝑠 (𝑧)) ⊗ 1/ (1 − 𝑧)2 = 1/ (1 − 3𝑧 + 𝑧2)
where 𝑠 (𝑧) is the RNA 𝐺𝐹. However, the bisection for-
mula can be applied to the Fibonacci generating function
𝐹 (𝑧). For more information on the bisection formula, see
[SSB+]. The result is

𝑠 (𝑧) / (1 − 𝑧𝑠 (𝑧))2 = (𝐹 (√𝑧) − 𝐹 (−√𝑧)) /2√𝑧.
This gives a nice relationship between the Fibonacci and
RNA 𝐺𝐹𝑠.

Since FTRA is based on the usual row-by-column ma-
trix multiplication, it can be extended to the matrix prod-
uct of two Riordan matrices. Let 𝐿 = (𝑔 (𝑧) , 𝑓 (𝑧)) and
𝑁 = (ℎ (𝑧) , 𝑙 (𝑧)) be Riordan matrices. Then the matrix
product 𝐿𝑁 is also a Riordan matrix which can be de-
scribed as follows:

𝐿𝑁 = (𝑔 (𝑧) , 𝑓 (𝑧)) ⊗ (ℎ (𝑧) , 𝑙 (𝑧))
= (𝑔 (𝑧) ⋅ ℎ (𝑓 (𝑧)) , 𝑙 (𝑓 (𝑧))) .

Note that, in the context of this article, a product of Ri-
ordanmatrices, expressed without the “⊗” symbol may be
interpreted as the usual matrix multiplication.

Example 13. An exercise for the reader is to show that
𝑃𝐶0 = 𝑀 where 𝑃 is Pascal’s Triangle, 𝐶0 = (𝑐 (𝑧2) , 𝑧𝑐 (𝑧2))
is the “aerated” version of the Aigner-Catalan Riordan
matrix from Example 8, and 𝑀 = (𝑚 (𝑧) , 𝑧𝑚 (𝑧)) is the
Motzkin Riordan matrix from Example 5. The entries of
𝐶0 and𝑀 count certain partial Motzkin paths [4], [N2].

The set of all Riordan matrices forms a group under
the operation of matrix multiplication [SGWW]. The iden-
tity element is (1, 𝑧). This is the usual identity with ones
along the main diagonal. The inverse of (𝑔(𝑧), 𝑓(𝑧)) is
(1/𝑔( ̄𝑓(𝑧)), ̄𝑓(𝑧)) where ̄𝑓(𝑧) is the compositional inverse

of 𝑓(𝑧) such that 𝑓( ̄𝑓) = 𝑧 = 𝑓 (𝑓) . For example, the in-
verse of Pascal’s Triangle is

𝑃−1 = (1/ (1 + 𝑧) , 𝑧/ (1 + 𝑧))
and the (𝑛, 𝑘)th element of 𝑃−1 is

[𝑧𝑛] 1
1 + 𝑧 (

𝑧
1 + 𝑧)

𝑘
= (−1)𝑛−𝑘(𝑛𝑘).

A slightly more complicated example, where the composi-
tional inverse is not as obvious to compute, is

((1 − 𝑧) , 𝑧 (1 − 𝑧))−1 = 𝐶,
where 𝐶 = (𝑐(𝑧), 𝑧𝑐(𝑧)) is the Aigner-Catalan array of Ex-
ample 8. In many instances, finding ̄𝑓(𝑧) can be laborous
and complicated.

Example 14. A nice application of 𝑃 and 𝑃−1 involves the
FTRA and the notion of binomial inversion (transform)
of sequences. If 𝐴 (𝑧) is the 𝐺𝐹 of the generic sequence
⟨𝑎𝑛⟩𝑛≥0, then the 𝐺𝐹 of the binomial transform ⟨𝑏𝑛⟩𝑛≥0 is
given by

𝐵 (𝑧) = 𝑃 ⊗ 𝐴 (𝑧)
= (1/ (1 − 𝑧)) 𝐴 (𝑧/ (1 − 𝑧)) .

Similarly,

𝐴 (𝑧) = 𝑃−1 ⊗ 𝐵 (𝑧)
= (1/ (1 + 𝑧)) 𝐵 (𝑧/ (1 + 𝑧)) .
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As a result of this we have the classical binomial transform
of sequences

𝑏𝑛 =
𝑛
∑
𝑘=0

(𝑛𝑘)𝑎𝑘 ⟺𝑎𝑛 =
𝑛
∑
𝑘=0

(𝑛𝑘) (−1)
𝑛−𝑘 𝑏𝑘.

Example 15. Let 𝑆 and 𝑊 denote, respectively, column
vectors associated with the sequences ⟨𝑠𝑛⟩𝑛≥0 and ⟨𝑤𝑛⟩𝑛≥0 .
Then 𝑃𝑊 = 𝑆 ⟺ 𝑃−1𝑆 = 𝑊, where 𝑃 is Pascal’s Triangle.
Supposewewant to find𝑊 such that 𝑆 is the RNAnumbers
described in Example 11. Then, by the FTRA

𝑃−1 ⊗ 𝑠 (𝑧) = (1/ (1 + 𝑧)) 𝑠 (𝑧/ (1 + 𝑧))
where 𝑠 (𝑧) is the RNA 𝐺𝐹. Thus, 𝑃−1 ⊗ 𝑠 (𝑧) equals

1 + 𝑧 + 𝑧2 −√1 + 2𝑧 − 𝑧2 − 6𝑧3 − 3𝑧4
2𝑧2 (1 + 𝑧) = 𝑤 (𝑧)

where 𝑤 (𝑧) is the 𝐺𝐹 associated with

⟨𝑤𝑛⟩𝑛≥0 = ⟨1, 0, 0, 1, −1, 2, −1, 1, 3, −5, 13, −13, …⟩ .
This curious sequence is not in the OEIS database [S1]. A
suggested exercise is to show that 𝑃 ⊗ 𝑤 (𝑧) = 𝑠 (𝑧) . This
gives a nice relationship between Pascal’s triangle and the
RNA numbers. An interesting open problem is to find
a combinatorial interpretation of this multiplication that
involves lattice paths or RNA secondary structures from
molecular biology.

There are many important subgroups of the Riordan
group. We list a few special subgroups below:

Appell subgroup: (𝑔(𝑧), 𝑧)
associated subgroup (1, 𝑓(𝑧))
Bell subgroup (𝑔(𝑧), 𝑧𝑔 (𝑧))
checkerboard subgroup (𝑔𝑒(𝑧), 𝑓𝑜 (𝑧))
derivative subgroup (𝑓′(𝑧), 𝑓 (𝑧))
hitting time subgroup (𝑧𝑓′(𝑧)/𝑓 (𝑧) , 𝑓 (𝑧))

Note that 𝑔𝑒 and 𝑓𝑜 are even and odd functions, respec-
tively. 𝑓′(𝑧) is the first derivative of 𝑓 (𝑧). 𝑃, 𝐵, 𝐶, 𝐶𝑜,𝑀,
and 𝑅∗ are elements of the Bell subgroup. In addition, 𝐶𝑜
is an element of the checkerboard subgroup and 𝑃 the hit-
ting time subgroup. Interestingly, one can use the fact that

(𝑔(𝑧), 𝑓 (𝑧)) = (𝑔(𝑧), 𝑧) ⊗ (1, 𝑓 (𝑧))
to show that the Riordan group is a semi-direct product of
the associated and Appell subgroups. For more algebraic
properties of the Riordan group, see [JLN].

Finally, we mention that Riordan matrices have recur-
sive formulas for their entries, known as “formation rules.”
A formation rule is a recurrence relation which describes
how each entry in a Riordan matrix 𝐿 can be expressed as
a linear combination of entries in the preceding rows. One
common formation rule is denoted by [𝑍; 𝐴], which repre-
sents two recurrence relations that define the way entries
of 𝐿 are computed. “𝑍” is a sequence of coefficients for

a recurrence relation that describes the entries of the left-
most or zeroth column of 𝐿 and “𝐴” is a sequence of coef-
ficients for a recurrence relation that describes the entries
of all other columns of 𝐿.

More precisely, the 𝑍-sequence 𝑍 = ⟨𝑧0, 𝑧1, …⟩ (𝑧0 ≠ 0)
characterizes the zeroth column of 𝐿 = (ℓ𝑛,𝑘)𝑛,𝑘≥0. This
means every element ℓ𝑛+1,0 can be expressed as a linear
combination of all the elements in the preceding row by

ℓ𝑛+1,0 = 𝑧0ℓ𝑛,0 + 𝑧1ℓ𝑛,1 +⋯ = ∑
𝑗≥0

𝑧𝑗ℓ𝑛,𝑗 .

The 𝐴-sequence 𝐴 = ⟨𝑎0, 𝑎1, …⟩ (𝑎0 ≠ 0) characterizes the
other columns of 𝐿. In this case every element ℓ𝑛+1,𝑘+1
can be expressed as a linear combination of the elements
in the preceding row, starting from the preceding column
by

ℓ𝑛+1,𝑘+1 = 𝑎0ℓ𝑛,𝑘 + 𝑎1ℓ𝑛,𝑘+1 +⋯ = ∑
𝑗≥0

𝑎𝑗ℓ𝑛,𝑘+𝑗 .

The 𝐺𝐹𝑠 of the 𝐴- and 𝑍-sequences, respectively, are

𝐴(𝑧) = 𝑧/ ̄𝑓(𝑧) and 𝑍 (𝑧) = 1/ ̄𝑓(𝑧) (1 − 1/𝑔 ( ̄𝑓(𝑧)))

where ̄𝑓(𝑧) is the compositional inverse of 𝑓 (𝑧) [4]. For
example, the formation rule of the Shapiro-Catalan Ri-
ordan matrix 𝐵 is [2, 1; 1, 2, 1] where 𝑍 (𝑧) = 2 + 𝑧 and
𝐴 (𝑧) = 1+2𝑧+𝑧2. In general, the entries are computed by
ℓ𝑛+1,0 = 2ℓ𝑛,0+ℓ𝑛,1 and ℓ𝑛+1,𝑘+1 = ℓ𝑛,𝑘+2ℓ𝑛,𝑘+1+ℓ𝑛,𝑘+2.
See [MRSV], [R] for more information on the 𝐴- and 𝑍-
sequences.
Riordan matrix method and lattice path counting. One
can use Riordan matrices to solve many kinds of lattice
path enumeration problems. A typical method for using
Riordan matrices to count lattice paths, as well as other
combinatorial objects, is outlined by the following steps:

1. Count a few cases for the objects and observe some
counting numbers.

2. Set up the counting numbers as a lower-triangular ma-
trix𝑀.

3. Find a pattern in the way the entries of 𝑀 are com-
puted.

4. Use the pattern (formation rules) to conjecture/define
𝑀 as a Riordan matrix 𝐿.

5. Find the generic element of 𝐿.
6. Use the generic element or formation rules to prove

combinatorially that 𝐿 counts the objects.
7. Compute 𝐿 ⊗ (1/ (1 − 𝑧)) to find the total number of

combinatorial objects.

We now apply the Riordan matrix method to a particu-
lar lattice path counting problem. The problem was previ-
ously solved in [N2]. However, in this survey we provide
more details and improve the presentation of the solution.
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We wish to count paths in ℤ2 that begin at the origin
(0, 0), remain in the upper 𝑥𝑦 plane, follow the step set

́𝑆 = {𝑁 (0, 1) , 𝑆 (0, −1) , 𝑅 (1, 0) , 𝐿 (−1, 0)}

with north (𝑁), south (𝑆), right (𝑅), and left (𝐿) unit steps,
and satisfy the following restrictions: (1) no path passes
below the 𝑥-axis, (2) there are no paths with consecutive
𝑁 and 𝑆 steps, i.e., there are no 𝑁𝑆 steps, (3) no paths
begin with an 𝐿 step, (4) all 𝐿 steps touch and remain
on the 𝑥-axis. Then, we call these paths 𝑁𝑆𝑅𝐿 paths. Let
𝑅∗1 = (𝜌𝑛,𝑘)𝑛,𝑘≥0 where 𝜌𝑛,𝑘 denotes the number of 𝑁𝑆𝑅𝐿
paths of length 𝑛 that end at height 𝑘. Recall that the height
corresponds to the 𝑦 value of the endpoint (𝑥, 𝑦) of the
path. A typical path of length 10 and height 1 is denoted
by the word

𝑅𝐿𝑅𝑅𝐿𝑁𝑅𝑆𝐿𝑁.
We want to find the total number of 𝑁𝑆𝑅𝐿 paths. Start

by counting the number of 𝑁𝑆𝑅𝐿 paths of length 𝑛 that
end at height 𝑘 for the first few cases where 𝑛, 𝑘 ≤ 5 and
obtain the following lower-triangular matrix

𝑅∗1 =

⎛
⎜
⎜
⎜
⎜
⎝

1
1 1
2 2 1
5 4 3 1
12 10 7 4 1
𝟐𝟗 𝟐𝟓 𝟏𝟖 𝟏𝟏 𝟓 𝟏

⎞
⎟
⎟
⎟
⎟
⎠

.

Then, we find the following patterns for the entries of 𝑅∗1.
We observe that the leftmost (or zeroth) column entry 𝟐𝟗
is computed by

𝟐𝟗 = 2 ⋅ 12 + 1 ⋅ 4 + 1 ⋅ 1 + 1 ⋅ 0 + 1 ⋅ 0.
All other leftmost column entries seem to follow this same
pattern (formation rule), that is, the same linear combina-
tion of respective entries from the preceding rows. We now
observe the other columns entries. Observe that 𝟏𝟖 is com-
puted by

𝟏𝟖 = 1 ⋅ 10 + 1 ⋅ 7 + 1 ⋅ 1 + 1 ⋅ 0 + 1 ⋅ 0.
All other bold entries in the other columns (not the left-
most) seem to follow this pattern. Thus, we conjecture this
pattern (formation rule) and make the assumption that
the (𝑛, 𝑘)-th entry of 𝑅∗1 is formed by the following recur-
rence relations. The leftmost or zeroth column is formed
for 𝜌0,0 = 1, 𝜌1,0 = 1, and 𝑛 ≥ 1

𝜌𝑛+1,0 = 2𝜌𝑛,0 + ∑
𝑘≥1

𝜌𝑛−𝑘,𝑘.

The other columns are formed for 𝑛, 𝑘 ≥ 1
𝜌𝑛+1,𝑘 = 𝜌𝑛,𝑘−1 + ∑

𝑗≥0
𝜌𝑛−𝑗,𝑘+𝑗

= 𝜌𝑛,𝑘−1 + 𝜌𝑛,𝑘 +⋯ .

As previously computed, one can easily confirm 𝜌5,0 = 29
and 𝜌5,2 = 18.

From the recurrence relations, we will derive explicit
𝐺𝐹𝑠 whose coefficients are the column entries of 𝑅∗1. Fol-
lowing the matrix formation rules, the definition of a Rior-
dan matrix, and making adjustments to properly align the
coefficents, the 𝑘th column 𝐺𝐹 of 𝑅∗1 is defined for 𝑘 ≥ 1
as

𝑔 ⋅ 𝑓𝑘 = 𝑧𝑔𝑓𝑘−1 + 𝑧 (𝑔𝑓𝑘 + 𝑧𝑔𝑓𝑘+1 + 𝑧2𝑔𝑓𝑘+2 +⋯) .
Solving for 𝑓 gives

𝑓 = 𝑧𝑓2 + (𝑧 − 𝑧2) 𝑓 + 𝑧.
Now, we solve 𝑓 in terms of 𝑓 (𝑧) and apply the quadratic
formula to obtain 𝑓 (𝑧) = 𝑧𝑠 (𝑧) where 𝑠 (𝑧) is the RNA 𝐺𝐹.
Similarily, the leftmost column 𝐺𝐹 of 𝑅∗1 is defined as

𝑔 = 1 + 𝑧 (2𝑔 + 𝑧𝑔𝑓 + 𝑧2𝑔𝑓2 +⋯) .
Using geometric series and simplifying,

𝑔 = 1 + 2𝑧𝑔 + 𝑧2𝑔𝑓 + 𝑧3𝑔𝑓2 +⋯
= 1 + 2𝑧𝑔 + 𝑧2𝑔𝑓 ⋅ (1 + 𝑧𝑓 + 𝑧2𝑓2 +⋯)
= 1 + 2𝑧𝑔 + 𝑧2𝑔𝑓 ⋅ (1/ (1 − 𝑧𝑓))
= (1 − 𝑧𝑓) / (1 − 2𝑧 − 𝑧𝑓 + 𝑧2𝑓) .

Now, we solve 𝑔 in terms of 𝑔 (𝑧) and substitute 𝑓 (𝑧) =
𝑧𝑠 (𝑧) to obtain

𝑔 (𝑧) = (1 − 𝑧2𝑠 (𝑧)) / (1 − 2𝑧 − 𝑧2𝑠 (𝑧) + 𝑧3𝑠 (𝑧)) .
Simplifying,

𝑔 (𝑧) = 1 − 𝑧
2𝑧 (1 − 3𝑧 + 𝑧2 −√△

−1 + 3𝑧 − 𝑧2 ) ,

where△= 1−2𝑧−𝑧2−2𝑧3+𝑧4. This confirms the pattern
(formation rule) and we conjecture that 𝑅∗1 is the Riordan
matrix defined by the 𝐺𝐹𝑠 derived from the recurrence re-
lations. Thus,

𝑅∗1 = (1 − 𝑧
2𝑧 (1 − 3𝑧 + 𝑧2 −√△

−1 + 3𝑧 − 𝑧2 ) , 𝑧𝑠 (𝑧)) .

We now give combinatorial arguments that show that
the entries of 𝑅∗1 model the lattice path counting problem
earlier described in this section. We want to find the total
number of 𝑁𝑆𝑅𝐿 paths of length 𝑛 ending at height 𝑘. We
will connect the entries of 𝑅∗1 to the paths by showing the
paths satisfy the recurrence relations. To do this we con-
sider the following combinatorial arguments. Consider an
𝑁𝑆𝑅𝐿 path of length 𝑛 ending at height 𝑘. To form a new
path of length 𝑛+1 of height 𝑘, we consider the following
cases. Case 1: Given a path of length 𝑛 ending at height
𝑘−1, there is one choice to move the path up to height 𝑘, a
north step 𝑁. Thus, if the last step is 𝑁, there are 1 ⋅ 𝜌𝑛,𝑘−1
possibilities to construct a new path ending at height 𝑘. In
this case, all paths with last step 𝑁 are counted by 𝜌𝑛,𝑘−1.
Case 2: Given a path of length 𝑛 ending at height 𝑘, there
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is one choice for the path to remain at height 𝑘, a right
step 𝑅. Thus, if the last step is 𝑅, there are 1 ⋅ 𝜌𝑛,𝑘 possi-
bilities to construct a new path ending at height 𝑘. In this
case, all paths with last step 𝑅 are counted by 𝜌𝑛,𝑘. Case
3: For 𝑗 ≥ 0, given a path of length 𝑛 − 𝑗 ending at height
𝑘+𝑗, there is one choice of 𝑗 south steps to move the path
down to height 𝑘. Thus, there are 1 ⋅ 𝜌𝑛−𝑗,𝑘+𝑗 possibilities
to construct a new path ending at height 𝑘. In this case, all
paths with 𝑗 south steps are counted by 𝜌𝑛−𝑗,𝑘+𝑗. For 𝑘 > 0
there are no paths with a last left step 𝐿 since 𝐿 steps touch
and remain on the 𝑥-axis. Now, summing all cases gives
all possible ways to construct a new path of lenth 𝑛 + 1
ending at height 𝑘. Therefore, the recurrence relation for
the other columns of 𝑅∗1 counts all 𝑁𝑆𝑅𝐿 paths of length 𝑛
ending at height 𝑘 ≥ 1. By similar arguments, we can show
that the leftmost column of 𝑅∗1 counts all paths of length
𝑛 ending at height 𝑘 = 0. This proves the formation rule
and gives 𝑅∗1 a 𝑁𝑆𝑅𝐿 lattice path interpretation.

To find the total number of 𝑁𝑆𝑅𝐿 paths, we apply the
FTRA and compute the row sums by

𝑅∗1 ⊗ (1/ (1 − 𝑧)) .

Simplifying, the total number of 𝑁𝑆𝑅𝐿 paths is given by

𝑅∗1 ⊗ (1/ (1 − 𝑧)) = (1 − 𝑧) / (1 − 3𝑧 + 𝑧2)
= ∑

𝑛≥0
𝜌𝑛𝑧𝑛 ≕ 𝐵𝐹 (𝑧)

where the 𝑛th coefficient is computed by the following
sums [A2]

[𝑧𝑛] 𝐵𝐹 (𝑧) = 1 +
𝑛
∑
𝑘=0

𝐹2𝑘 =
𝑛
∑
𝑘=0

(2𝑛 − 𝑘
𝑘 ).

For example,

[𝑧3] 𝐵𝐹 (𝑧) = 1 +
3
∑
𝑘=0

𝐹2𝑘

= 13 = 𝜌3.

Thus, the total number of 𝑁𝑆𝑅𝐿 paths are counted by
the bisected Fibonacci numbers with generating function
𝐵𝐹 (𝑧). The number of Dyck paths of length 2𝑛 and height
at most 3 are also counted by these bisected Fibonacci
numbers. A suggested exercise is to find an explicit bijec-
tion between these two sets of paths. See OEIS [S1] se-
quence number 𝐴001519 for other combinatorial objects
enumerated by the counting numbers ⟨𝜌𝑛⟩𝑛≥0.
Generalized Catalan paths and Riordan matrices. The
Riordan matrix method can be readily used to study sta-
tistics on lattice paths and other combinatorial objects.
In this final section, we give some illustrations of how
Riordan matrices can be leveraged to study statistical
distributions of generalized lattice paths and to observe

combinatorial relationships among higher-dimensional
lattice paths.

A frequent example of lattice paths are the so-called
Catalan paths, which are equivalent to ballot numbers and
Dyck paths. A Catalan path is a path starting from the ori-
gin (0, 0), using 𝑛 steps of the form (1, 0) and 𝑛 steps of the
form (0, 1), that does not go above the line 𝑦 = 𝑥. Catalan
paths are equivalent to Dyck 𝑛-paths, as described in Exam-
ple 1. The number of Dyck 𝑛-paths that end at height 𝑘 is
given by the (𝑛, 𝑘)th entry of the (aerated) Catalan matrix
𝐶0 = (𝑐(𝑧2), 𝑧𝑐(𝑧2)).

Catalan paths can be generalized in a variety of ways to
obtain other interesting lattice paths associated with well-
known combinatorial sequences. For instance, 𝑡-Dyck
paths are paths of length 𝑡𝑛 from (0, 0) to (𝑡𝑛, 0), where
𝑡 > 0, that use up steps 𝑈 of the form (1, 1) and down
steps 𝐷 of the form (1, −𝑡 + 1) and do not go below the
𝑥-axis. When 𝑡 = 2, we have Dyck paths while the paths
we obtain when 𝑡 = 3 are called ternary paths which are
counted by the ternary numbers

1
2𝑛+1

( 3𝑛
𝑛
)with generating

function 𝑇(𝑧) satisfying 𝑇(𝑧) = 1 + 𝑧𝑇3(𝑧).
A 𝑡-Dyck path can also be thought of as a path starting

from the origin (0, 0) that uses 𝑛 steps of the form (1, 0)
and (𝑡 − 1)𝑛 steps of the form (0, 1) that does not go above
the line 𝑦 = (𝑡 − 1)𝑥. In general, 𝑡-Dyck paths are counted
by the Fuss–Catalan numbers

1
(𝑡−1)𝑛+1

( 𝑡𝑛
𝑛
).

One may be interested in enumerating certain proper-
ties of these generalized lattice paths, such as the num-
ber of peaks, valleys, returns, or hills. A return in a Dyck
path is a non-origin point on the path that intersects the 𝑥-
axis. The Riordan matrix 𝐶 = (𝑐(𝑧), 𝑧𝑐(𝑧)), from Example
8, counts the number of Catalan paths of length 2(𝑛 + 1)
having exactly 𝑘 + 1 returns to the 𝑥-axis. A quick com-
putation of (𝑐(𝑧), 𝑧𝑐(𝑧)) ⊗ 1

1−𝑧
verifies that the row sums

of (𝑐(𝑧), 𝑧𝑐(𝑧)) indeed count the total number of Catalan
paths of length 2(𝑛 + 1). Moreover, the computation of

[𝑧𝑛] (𝑐(𝑧), 𝑧𝑐(𝑧)) ⊗ 1
(1−𝑧)2

[𝑧𝑛]𝑐(𝑧)
produces the average number of returns among Dyck 𝑛-
paths. An exercise for the reader is to perform this compu-
tation and show that the average number of returns among
Dyck 𝑛-paths approaches 3 as 𝑛 → ∞.

Similarly, the total number of returns among ternary
paths of length 3𝑛 is given by

(1, 𝑧 (𝑇(𝑧))2) ⊗ 𝑧
(1 − 𝑧)2 = 𝑧 (𝑇(𝑧))4 .

Hence, the expected number of returns among ternary
paths is

[𝑧𝑛]𝑧 (𝑇(𝑧))4
[𝑧𝑛]𝑇(𝑧) = 2𝑛

𝑛 + 1,
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which approaches 2 as 𝑛 → ∞. Furthermore, one can
use these methods to show that the probability that a
randomly chosen ternary path has exactly 𝑘 returns ap-

proaches
4𝑘
3𝑘+1

and that the expected number of returns

among nontrivial 𝑡-Dyck paths approaches
𝑡+1
𝑡−1

with vari-

ance
2𝑡

(𝑡−1)2
. Ultimately, these results lead to the fact that

the number of returns among 𝑡-Dyck paths approaches a
negative binomial distribution with parameters 2 and 𝑡−1

𝑡
.

[CM]
A hill in a 𝑡-Dyck path is a subsequence of the form

𝑈𝑡−1𝐷 such that the preceding sequence of steps form a
𝑡-Dyck path. The number of Dyck 𝑛-paths having exactly
𝑘 ≥ 0 hills is given by the Riordan array ( ̃𝑓(𝑧), 𝑧 ̃𝑓(𝑧))where

̃𝑓(𝑧) = 1 − √1 − 4𝑧
𝑧 (3 − √1 − 4𝑧)

= 𝑐(𝑧)
1 + 𝑧𝑐(𝑧)

is the 𝐺𝐹 for the Fine numbers ⟨ ̃𝑓𝑛⟩𝑛≥0 =
⟨1, 0, 1, 2, 6, 18, 57, 186, … ⟩. Dyck paths having no hills,
known as Fine paths, are counted by the Fine numbers.
The reader may verify as an exercise that the total number
of hills among Dyck 𝑛-paths is given by

[𝑧𝑛] ( ̃𝑓(𝑧), 𝑧 ̃𝑓(𝑧)) ⊗ 𝑧
(1 − 𝑧)2 = 𝑐(𝑧) − 1,

which implies that the expected number of hills among
Dyck 𝑛-paths is exactly 1. This result suggests that there is
a bijection between the set of Dyck 𝑛-paths and the set of
hills among all Dyck 𝑛-paths. One nice bijection can be
described as follows. Given the hill 𝑈𝐷 in a Dyck 𝑛-path
of the form 𝑆1𝑈𝐷𝑆2, where 𝑈 is an up step, 𝐷 is a down
step, and 𝑆1, 𝑆2 are Dyck paths of semilength at most 𝑛,
map the hill 𝑈𝐷 to the Dyck 𝑛-path 𝑈𝑆1𝐷𝑈𝑆2. It should
be clear that the mapping is injective, and since every Dyck
𝑛-path can be described in the latter form, the mapping is
surjective.

More generally speaking, similar methods on the gen-
eralized Fine array ( ̃𝑓𝑡(𝑧), 𝑧 ̃𝑓𝑡(𝑧)), where ̃𝑓𝑡(𝑧) is the 𝐺𝐹 for
the number of 𝑡-Dyck paths having no hills, can be used
to show that the number of hills among 𝑡-Dyck paths of
length 𝑡𝑛 has expected value

2((𝑡 − 1)𝑛 + 1)𝑡−2
𝑡(𝑡𝑛 − 1)𝑡−2 ,

where 𝑡𝑗 ≔ 𝑡(𝑡−1)⋯ (𝑡−𝑗+1), and approaches a negative

binomial distribution with parameters 2 and
𝑡𝑡−1

𝑡𝑡−1+(𝑡−1)𝑡−2
[CM].

As mentioned previously, lattice paths from (0, 0) to
(𝑛, 0) that use up steps of the form (1, 1), down steps of the
form (1, −1), and level steps of the form (1, 0) are known
as Motzkin paths, which are counted by the Motzkin num-
bers. When we allow two possible colors for the level step,

the resulting paths, which we will call 2-colored Motzkin
paths, are counted by the Catalan numbers with generat-
ing function 𝑐2(𝑧). In fact, the (𝑛, 𝑘)th entry of the Bell sub-
group Riordan matrix 𝐵 = (𝑐2(𝑧), 𝑧𝑐2(𝑧)), from Example 9
is the number of these 2-colored Motzkin paths of length
𝑛 having terminal height 𝑘. Recall that a formation rule
for (𝑐2(𝑧), 𝑧𝑐2(𝑧)) is [2, 1; 1, 2, 1]. Another lattice path inter-
pretation of the array (𝑐2(𝑧), 𝑧𝑐2(𝑧)) is the number of Dyck
paths of length 2𝑛+1 that go from (0, 0) to (2𝑛+1, 2𝑘+1).

On the other hand, ternary paths of length 3𝑛 + 1 that
go from (0, 0) to (3𝑛+1, 3𝑘+1) are counted by the Bell sub-
group matrix (𝑇3(𝑧), 𝑧𝑇3(𝑧)) where 𝑇(𝑧) is the 𝐺𝐹 for the
ternary numbers. The formation rule for (𝑇3(𝑧), 𝑧𝑇3(𝑧)) is
[3, 3, 1; 1, 3, 3, 1]. Given this formation rule, it is not hard
to see that the (𝑛, 𝑘)th entry of (𝑇3(𝑧), 𝑧𝑇3(𝑧)) also counts
paths from (0, 0) to (𝑛, 𝑘) that never go below the 𝑥-axis
and use the following 8 types of steps: 𝑈(1, 1), 𝐿1(1, 0),
𝐿2(1, 0), 𝐿3(1, 0), 𝐷1(1, −1), 𝐷2(1, −1), 𝐷3(1, −1). There is
a natural bijection between these paths and the aforemen-
tioned ternary paths.

More generally, the Bell subgroup matrix whose forma-
tion rule is determined by the 𝑡th row of Pascal’s triangle
will count lattice paths of length 𝑡𝑛+1 that go from (0, 0) to
(𝑡𝑛+1, 𝑡𝑘+1) and use up steps of the form (1, 1) and down
steps of the form (1, −𝑡 + 1) that never go below the 𝑥-axis.
And furthermore, this same matrix will count paths from
(0, 0) to (𝑛, 𝑘) that never go below the 𝑥-axis and use 2𝑡 pos-
sible steps, each of the form 𝐿𝑖(1, −𝑘+1)where 𝑘 = 0, 1, … 𝑡
for some 𝑖 between 1 and (𝑡

𝑘
). Given that there are natural

bijections between these two different path interpretations,
it would be interesting to explore through the Riordan ma-
trix method how certain statistics may translate between
these lattice path interpretations and how the resulting sta-
tistical distributions compare.

As a final illustration of the vast connections between
lattice path enumeration and Riordanmatrices, we present
two open problems related to higher-dimensional lattice
paths and generalized Riordan arrays.

Consider the generalized Riordan matrix

𝑅∗𝑡 = (((1 − 𝑧) / (1 − 𝑧𝑠 (𝑧)))𝑡 𝑠 (𝑧) , 𝑧𝑠 (𝑧))
where 𝑠 (𝑧) is the RNA 𝐺𝐹. Note that 𝑅∗ and 𝑅∗1 are special
cases where 𝑡 = 0 and 𝑡 = 1, and for 𝑡 = 2, we have

𝑅∗2 = ((1 − 2𝑧 + 𝑧2) / (1 − 3𝑧 + 𝑧2) , 𝑧𝑠 (𝑧)) .
Interesting open problems are to find lattice path inter-

pretations of the generalized Riordan matrix 𝑅∗𝑡 for 𝑡 ≥ 2.
In Figure 4, there is a nice example of an infinite two-
dimensional array made up of products of Riordan matri-
ces that involve Pascal’s triangle 𝑃 and the “aerated” Aigner-
Catalan matrix 𝐶0 = (𝑐(𝑧2), 𝑧𝑐(𝑧2)). The infinite array de-
noted by £𝑡,𝜈 = 𝑃𝑡𝐶0𝐸𝜈 constructed in [N2] is a triple prod-
uct of Riordan matrices where 𝐸𝜈 = (1/ (1 − 𝑧)𝜈 , 𝑧). Some
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𝐶0 → 𝐶0𝐸 → 𝐶0𝐸2 → ⋯
↓ ↓ ↓
𝑃𝐶0 → 𝑃𝐶0𝐸 → 𝑃𝐶0𝐸2 → ⋯
↓ ↓ ↓
𝑃2𝐶0 → 𝑃2𝐶0𝐸 → 𝑃2𝐶0𝐸2 → ⋯
↓ ↓ ↓
𝑃3𝐶0 → 𝑃3𝐶0𝐸 → 𝑃3𝐶0𝐸2 → ⋯
↓ ↓ ↓
⋮ ⋮ ⋮

Figure 4. Each entry is a product of Riordan matrices
£𝑡,𝜈 = 𝑃𝑡𝐶0𝐸𝜈 , where 𝑃 is Pascal’s triangle, 𝐶0 is a special
Shapiro-Catalan array and 𝐸 is the lower-triangular array
whose entries equal 1.

interesting matrices that appear in £𝑡,𝜈 are the Pascal, Cata-
lan, Motzkin, hexagonal (Hex), and directed animal arrays.
Solutions of certain higher-dimensional lattice path count-
ing problems are known for the first two columns of this
infinite two-dimensional array, but less is known about
the remaining columns. Thus, £𝑡,𝜈 is of combinatorial in-
terest. See [N2] for more information on Riordanmatrices
and generalized lattice paths.
£𝑡,𝜈 is the Riordan matrix

£𝑡,𝜈 = (𝑘𝑡 (𝑧) / (1 − 𝑧𝑘𝑡 (𝑧))
𝜈 , 𝑧𝑘𝑡 (𝑧))

where

𝑘𝑡 (𝑧) = (1 − 𝑡𝑧 − √1 − 2𝑡𝑧 + (𝑡2 − 4) 𝑧2) /2𝑧2

= (1/ (1 − 𝑡𝑧)) 𝑐 ((𝑧/ (1 − 𝑡𝑧))2)

and 𝑐 (𝑧) is the Catalan𝐺𝐹. Thus, £𝑡,𝜈 is a generalized Cata-
lan Riordan matrix. See Figure 4 for the first few entries of
£𝑡,𝜈. Surprisingly, by moving down the leftmost column
of £𝑡,𝜈 a solution of Sands’s problem is found in [N2]. In
addition, Sands’s problem was extended to higher dimen-
sions in ℤ𝑑 for 𝑑 > 3 where there are countably many step
directions and the paths never pass below the (𝑑 − 1) 𝑡ℎ
hyperplane 𝑥1 +⋯+ 𝑥𝑑−1 = 0. The height of each higher-
dimensional path corresponds to the value 𝑥𝑑 of the end-
point (𝑥1, … , 𝑥𝑑) of the path. The step sets of the higher-
dimensional paths are defined in [N2]. Another subclass
of paths called generalized (or partial-t) Motzkin walks are
also counted by the entries of the leftmost column. In
the same paper [N2], higher-dimensional path results were
also obtained by moving down the first column of £𝑡,𝜈. By
moving down the first column, surprisingly, a more restric-
tive subset of Sands type paths called power walks are ob-
tained. These paths are generalized to higher dimensions
and a Motzkin analog is given [N2]. An interesting open
problem is to find a higher-dimensional lattice path inter-
pretation of the matrix entries 𝑃𝑡𝐶0𝐸2 of the second col-
umn of £𝑡,𝜈. There is not much known about £𝑡,𝜈 for col-
umn entries for 𝜈 ≥ 2.

ACKNOWLEDGMENT. The authors would like to
thank the associate editor and anonymous referees for
useful comments that improved this article.

References
[A1] Martin Aigner, Catalan-like numbers and determinants, J.

Combin. Theory Ser. A 87 (1999), no. 1, 33–51, DOI
10.1006/jcta.1998.2945. MR1698277

[A2] Mohammad K. Azarian, Fibonacci identities as binomial
sums, Int. J. Contemp. Math. Sci. 7 (2012), no. 37-40,
1871–1875. MR2959001

[B] Paul Barry, Exponential Riordan arrays and permutation enu-
meration, J. Integer Seq. 13 (2010), no. 9, Article 10.9.1, 16.
MR2746249

[4] Paul Barry, Riordan arrays: a primer, Kildare, Ireland: Logic
Press, 2016.

[CM] Naiomi T. Cameron and Jillian E. McLeod, Returns and
hills on generalized Dyck paths, J. Integer Seq. 19 (2016),
no. 6, Article 16.6.1, 28, DOI 10.9734/bjmcs/2016/30398.
MR3546615

[H] Katherine Humphreys, A history and a survey of lattice path
enumeration, J. Statist. Plann. Inference 140 (2010), no. 8,
2237–2254, DOI 10.1016/j.jspi.2010.01.020. MR2609483

[J] Eri Jabotinsky, Representation of functions by matrices. Appli-
cation to Faber polynomials, Proc. Amer. Math. Soc. 4 (1953),
546–553, DOI 10.2307/2032522. MR59359

[JLN] Candice Jean-Louis and Asamoah Nkwanta, Some alge-
braic structure of the Riordan group, Linear Algebra Appl. 438
(2013), no. 5, 2018–2035, DOI 10.1016/j.laa.2012.10.027.
MR3005272

[K] Christian Krattenthaler, Lattice path enumeration, Hand-
book of enumerative combinatorics, Discrete Math. Appl.
(Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 589–
678. MR3409351

[MRSV] Donatella Merlini, Douglas G. Rogers, Renzo Sprug-
noli, and M. Cecilia Verri, On some alternative characteriza-
tions of Riordan arrays, Canad. J. Math. 49 (1997), no. 2,
301–320, DOI 10.4153/CJM-1997-015-x. MR1447493

[N1] Asamoah Nkwanta, Lattice paths and RNA secondary
structures, African Americans in mathematics (Piscataway,
NJ, 1996), DIMACS Ser. Discrete Math. Theoret. Com-
put. Sci., vol. 34, Amer. Math. Soc., Providence, RI, 1997,
pp. 137–147. MR1482263

[N2] Asamoah Nkwanta, Riordan matrices and higher-
dimensional lattice walks, J. Statist. Plann. Inference 140
(2010), no. 8, 2321–2334, DOI 10.1016/j.jspi.2010.01.027.
MR2609490

[R] D. G. Rogers, Pascal triangles, Catalan numbers and renewal
arrays, Discrete Math. 22 (1978), no. 3, 301–310, DOI
10.1016/0012-365X(78)90063-8. MR522725

[S] Issai Schur, On Faber polynomials, Amer. J. Math. 67
(1945), 33–41, DOI 10.2307/2371913. MR11740

242 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 2

http://dx.doi.org/10.1016/j.jspi.2010.01.027
http://dx.doi.org/10.4153/CJM-1997-015-x
http://dx.doi.org/10.1016/j.laa.2012.10.027
http://dx.doi.org/10.2307/2032522
http://dx.doi.org/10.1016/j.jspi.2010.01.020
http://dx.doi.org/10.9734/bjmcs/2016/30398
http://dx.doi.org/10.1006/jcta.1998.2945
http://www.ams.org/mathscinet-getitem?mr=1698277
http://www.ams.org/mathscinet-getitem?mr=2959001
http://www.ams.org/mathscinet-getitem?mr=2746249
http://www.ams.org/mathscinet-getitem?mr=3546615
http://www.ams.org/mathscinet-getitem?mr=2609483
http://www.ams.org/mathscinet-getitem?mr=59359
http://www.ams.org/mathscinet-getitem?mr=3005272
http://www.ams.org/mathscinet-getitem?mr=3409351
http://www.ams.org/mathscinet-getitem?mr=1447493
http://www.ams.org/mathscinet-getitem?mr=1482263
http://www.ams.org/mathscinet-getitem?mr=2609490
http://www.ams.org/mathscinet-getitem?mr=522725
http://www.ams.org/mathscinet-getitem?mr=11740
http://dx.doi.org/10.2307/2371913
http://dx.doi.org/10.1016/0012-365X(78)90063-8


[SSB+] Louis Shapiro, Renzo Sprugnoli, Paul Barry, Gi-Sang
Cheon, Tian-Xiao He, Donatella Merlini, and Weiping
Wang, The Riordan group and applications, Springer Mono-
graphs in Mathematics, Springer, Cham, [2022] ©2022.
With a foreword by Richard Stanley, DOI 10.1007/978-3-
030-94151-2. MR4424807

[SGWW] Louis W. Shapiro, Seyoum Getu, Wen Jin Woan,
and Leon C. Woodson, The Riordan group, Discrete Appl.
Math. 34 (1991), no. 1-3, 229–239, DOI 10.1016/0166-
218X(91)90088-E. Combinatorics and theoretical com-
puter science (Washington, DC, 1989). MR1137996

[S1] Neil J. A. Sloane, The on-line encyclopedia of integer se-
quences, Notices Amer. Math. Soc. 65 (2018), no. 9, 1062–
1074. MR3822822

[S2] Richard P. Stanley, Enumerative combinatorics. Vol. 2,
Cambridge Studies in Advanced Mathematics, vol. 62,
Cambridge University Press, Cambridge, 1999.With a fore-
word by Gian-Carlo Rota and appendix 1 by Sergey Fomin,
DOI 10.1017/CBO9780511609589. MR1676282

[W1] Michael S. Waterman, Secondary structure of single-
stranded nucleic acids, Studies in foundations and combina-
torics, Adv. in Math. Suppl. Stud., vol. 1, Academic Press,
New York-London, 1978, pp. 167–212. MR520559

[W2] Herbert S. Wilf, generatingfunctionology, 2nd ed., Aca-
demic Press, Inc., Boston, MA, 1994. MR1277813

Linear Algebra
Vector Spaces and Linear Transformations
Meighan I. Dillon, Kennesaw State University, Marietta, GA

This textbook is directed towards students who are familiar with matrices and their use in solving 
systems of linear equations. The emphasis is on the algebra supporting the ideas that make linear 
algebra so important, both in theoretical and practical applications. The narrative is written to bring 
along students who may be new to the level of abstraction essential to a working understanding 
of linear algebra. The determinant is used throughout, placed in some historical perspective, and 
defined several different ways, including in the context of exterior algebras. The text details proof of 
the existence of a basis for an arbitrary vector space and addresses vector spaces over arbitrary fields. 
It develops LU-factorization, Jordan canonical form, and real and complex inner product spaces. It 
includes examples of inner product spaces of continuous complex functions on a real interval, as well 
as the background material that students may need in order to follow those discussions. Special classes of matrices make an entrance early 
in the text and subsequently appear throughout. The last chapter of the book introduces the classical groups.

Pure and Applied Undergraduate Texts, Volume 57; 2023; 367 pages; Softcover; ISBN: 978-1-4704-6986-3; List US$85; AMS members US$68;
MAA members US$76.50; Order code AMSTEXT/57

Learn more at bookstore.ams.org/amstext-57
Background image credit: Liudmila Chernetska / iStock / Getty Images Plus via Getty Images

NNew from the AMS

Naiomi Cameron Asamoah Nkwanta

Credits

Opening image is courtesy of shaunl via Getty.
Figures 1, 2, 3, and 4 are courtesy of Naiomi Cameron.
Photo of Naiomi Cameron is courtesy of Aaron Fagerstrom.
Photo of Asamoah Nkwanta is courtesy of Charlita Woodruff-

White.

FEBRUARY 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 243

http://dx.doi.org/10.1007/978-3-030-94151-2
http://dx.doi.org/10.1007/978-3-030-94151-2
http://dx.doi.org/10.1016/0166-218X(91)90088-E
http://dx.doi.org/10.1016/0166-218X(91)90088-E
http://dx.doi.org/10.1017/CBO9780511609589
http://www.ams.org/mathscinet-getitem?mr=4424807
http://www.ams.org/mathscinet-getitem?mr=1137996
http://www.ams.org/mathscinet-getitem?mr=3822822
http://www.ams.org/mathscinet-getitem?mr=520559
http://www.ams.org/mathscinet-getitem?mr=1676282
http://www.ams.org/mathscinet-getitem?mr=1277813
http://bookstore.ams.org/amstext-57

