Paper The following article is Open access

Comparative Study On Water Uptake And Ionic Transport Properties Of Pre- And Post Sulfonated Chitosan/PVA polymer Exchange Membrane

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Chun Yik Wong et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 458 012017 DOI 10.1088/1757-899X/458/1/012017

1757-899X/458/1/012017

Abstract

Chitosan/poly(vinyl alcohol) (PVA) blend composite was prepared through two strategies of chemical modification, namely pre- and post-sulfonation. The sulfonation was carried out by using 4-sulfopthalic acid (sPTA) as the sulfonating agent. The modified chitosan/PVA blend composite was prepared under a range of chitosan content (10:90, 25:75, 50:50, 75:25 and 90:10). Water uptake and ion exchange capacity (IEC) of modified membranes were evaluated by titration and gravimetry methods respectively. Accordingly, both pre- and post-sulfonated composite showed a decrease in water uptakes and IEC values with an increase in chitosan content from 10 to 50 vol.%, attributed to the greater number of hydrogen bond pairs between the two polymers. At 75 vol.%, the composite was predicted to be dominant by the hydrophilic nature of chitosan, in which IEC values and water uptakes were shown to increase. The composite with 90 wt.% chitosan was found to be excessively hydrophilic with tremendously high water uptake, hence not suitable for fuel cell application. Besides that, the post-sulfonated composite showed a trend of increase in the IEC values and water uptakes with a decrease in chitosan content from 10 to 50 vol.%, and bounced back at 75 vol.%. Despite both pre- and post-sulfonation methods demonstrated similar trends in the results, it was notable that post-sulfonation method emerged with higher water uptake and ionic conductivity was found more favorable, attributed to the possibility that sulfonation took place on both PVA and chitosan which has caused a significant increase in sulfonic groups that purportedly exhibited higher ion transport mobility.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.