Paper The following article is Open access

Effect of the silicon content in steel on the hot-dip zinc coating microstructure formation

and

Published under licence by IOP Publishing Ltd
, , Citation O S Bondareva and A A Melnikov 2016 IOP Conf. Ser.: Mater. Sci. Eng. 156 012015 DOI 10.1088/1757-899X/156/1/012015

1757-899X/156/1/012015

Abstract

The aim of this study was to clarify the effect of the silicon content in steel on the structure of hot-dip galvanized zinc coating. It was found that in steel samples containing the silicon in an amount of about 0.1% and 0.5% the increased thickness coating was formed. This fact was associated with structural features of the ζ-phase. Energy dispersive microanalysis had shown the maximum concentration of silicon in the coating was observed in ζ-phase on St3 steel (Si = 0.1%) and in the fine mixture of δ and ζ-phase on 09G2S steel (Si>0.5%). This phenomenon was analyzed using a Zn-Fe-Si system diagram and its polytermic sections. It was found that there were eutectic reactions of decomposition the liquid to mixture (ζ+η+ FeSi) phases at the content of silicon in steel about 0.1% and more than 0.5%. Particles of FeSi-phase were involved in the dissolution of Г and δ phases, which led to a direct contact of the melt and the steel substrate. This process was accompanied by the intensive ζ-phase formation and the rapid growth of coating thickness.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.