Brought to you by:
The following article is Open access

Electrostatic precipitation of dust in the Martian atmosphere: Implications for the utilization of resources during future manned exploration missions

, , , , , and

Published under licence by IOP Publishing Ltd
, , Citation C I Calle et al 2011 J. Phys.: Conf. Ser. 327 012048 DOI 10.1088/1742-6596/327/1/012048

1742-6596/327/1/012048

Abstract

Future human missions to Mars will require the utilization of local resources for oxygen, fuel, and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere, composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to charge, precipitate and collect dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures, the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily transitions to a glow/streamer discharge, which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/1742-6596/327/1/012048