Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures

, , , , , , , , , , and

Published 22 March 2002 Published under licence by IOP Publishing Ltd
, , Citation O Ambacher et al 2002 J. Phys.: Condens. Matter 14 3399 DOI 10.1088/0953-8984/14/13/302

0953-8984/14/13/3399

Abstract

The macroscopic nonlinear pyroelectric polarization of wurtzite AlxGa1-xN, InxGa1-xN and AlxIn1-xN ternary compounds (large spontaneous polarization and piezoelectric coupling) dramatically affects the optical and electrical properties of multilayered Al(In)GaN/GaN hetero-, nanostructures and devices, due to the huge built-in electrostatic fields and bound interface charges caused by gradients in polarization at surfaces and heterointerfaces. Models of polarization-induced effects in GaN-based devices so far have assumed that polarization in ternary nitride alloys can be calculated by a linear interpolation between the limiting values of the binary compounds. We present theoretical and experimental evidence that the macroscopic polarization in nitride alloys is a nonlinear function of strain and composition. We have applied these results to interpret experimental data obtained in a number of InGaN/GaN quantum wells (QWs) as well as AlInN/GaN and AlGaN/GaN transistor structures. We find that the discrepancies between experiment and ab initio theory present so far are almost completely eliminated for the AlGaN/GaN-based heterostructures when the nonlinearity of polarization is accounted for. The realization of undoped lattice-matched AlInN/GaN heterostructures further allows us to prove the existence of a gradient in spontaneous polarization by the experimental observation of two-dimensional electron gases (2DEGs). The confinement of 2DEGs in InGaN/GaN QWs in combination with the measured Stark shift of excitonic recombination is used to determine the polarization-induced electric fields in nanostructures. To facilitate inclusion of the predicted nonlinear polarization in future simulations, we give an explicit prescription to calculate polarization-induced electric fields and bound interface charges for arbitrary composition in each of the ternary III-N alloys. In addition, the theoretical and experimental results presented here allow a detailed comparison of the predicted electric fields and bound interface charges with the measured Stark shift and the sheet carrier concentration of polarization-induced 2DEGs. This comparison provides an insight into the reliability of the calculated nonlinear piezoelectric and spontaneous polarization of group III nitride ternary alloys.

Export citation and abstract BibTeX RIS

Please wait… references are loading.