Paper

Spherically symmetric Einstein–Maxwell theory and loop quantum gravity corrections

Published 31 October 2012 © 2012 IOP Publishing Ltd
, , Citation Rakesh Tibrewala 2012 Class. Quantum Grav. 29 235012 DOI 10.1088/0264-9381/29/23/235012

0264-9381/29/23/235012

Abstract

Effects of inverse triad corrections and (point) holonomy corrections, occurring in loop quantum gravity, are considered on the properties of Reissner–Nordström black holes. The version of inverse triad corrections with unmodified constraint algebra reveals the possibility of occurrence of three horizons (over a finite range of mass) and also shows a mass threshold beyond which the inner horizon disappears. For the version with modified constraint algebra, coordinate transformations are no longer a good symmetry. The covariance property of spacetime is regained by using a quantum notion of mapping from phase space to spacetime. The resulting quantum effects in both versions of these corrections can be associated with renormalization of either mass, charge or wavefunction. In neither of the versions, Newton's constant is renormalized. (Point) Holonomy corrections are shown to preclude the undeformed version of constraint algebra as also a static solution, though time-independent solutions exist. A possible reason for difficulty in constructing a covariant metric for these corrections is highlighted. Furthermore, the deformed algebra with holonomy corrections is shown to imply signature change.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

Please wait… references are loading.
10.1088/0264-9381/29/23/235012