Brought to you by:
NOTE

Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics

, , and

Published 29 June 2005 2005 IOP Publishing Ltd
, , Citation Gloria M Spirou et al 2005 Phys. Med. Biol. 50 N141 DOI 10.1088/0031-9155/50/14/N01

0031-9155/50/14/N141

Abstract

A novel optoacoustic phantom made of polyvinyl chloride-plastisol (PVCP) for optoacoustic studies is described. The optical and acoustic properties of PVCP were measured. Titanium dioxide (TiO2) powder and black plastic colour (BPC) were used to introduce scattering and absorption, respectively, in the phantoms. The optical absorption coefficient (μa) at 1064 nm was determined using an optoacoustic method, while diffuse reflectance measurements were used to obtain the optical reduced scattering coefficient (μ's). These optical properties were calculated to be μa = (12.818 ± 0.001)ABPC cm−1 and μ's = (2.6 ± 0.2)STiO2 + (1.4 ± 0.1) cm-1, where ABPC is the BPC per cent volume concentration, and STiO2 is the TiO2 volume concentration (mg mL−1). The speed of sound in PVCP was measured to be (1.40 ± 0.02) × 103 m s−1 using the pulse echo transmit receive method, with an acoustic attenuation of (0.56 ± 1.01) f(1.51±0.06)MHz (dB cm−1) in the frequency range of 0.61–1.25 MHz, and a density, calculated by measuring the displacement of water, of 1.00 ± 0.04 g cm−3. The speed of sound and density of PVCP are similar to tissue, and together with the user-adjustable optical properties, make this material well suited for developing tissue-equivalent phantoms for biomedical optoacoustics.

Export citation and abstract BibTeX RIS

Please wait… references are loading.