Combinational use of conformal and intensity-modulated beams in radiotherapy planning

, , and

Published 3 June 2003 Published under licence by IOP Publishing Ltd
, , Citation Catherine Coolens et al 2003 Phys. Med. Biol. 48 1795 DOI 10.1088/0031-9155/48/12/309

0031-9155/48/12/1795

Abstract

Intensity-modulated (IM) beam profiles computed by inverse-planning systems tend to be complex and may have multiple spatial minima and maxima. In addition to the structure originating from the treatment objectives, beam profiles might contain stochastic structure or noise and numerical artefacts, which present certain practical difficulties. The combinational use of conformal and intensity-modulated beams could be a different method of making the total fluence distribution less noisy and deliverable without compromising the advantages of IMRT. The investigation of this possibility provided the basis for this paper. A treatment-planning study was performed to compare plans combining modulated and unmodulated beams with a 5-field, equally spaced, full IMRT plan for treating the prostate and seminal vesicles in three patients. Beam angles for this study were 0°, 72°, 144°, 216° and 288°. Additionally, a study was performed on a patient with a different beam arrangement (36°, 108°, 180°, 252°, 324°) from the first study to test the obtained results. This study has demonstrated that it is possible to substitute up to two conformal beams in the originally full IMRT plan when carefully selecting the conformal beam angles. Making the anterior beam (0°) and an anterior oblique beam (between 0° and 90°) conformal leads to a reduction in the total number of monitor units and segments of about 15% and 39%, respectively. Additionally, these two open fields can be used for simpler treatment verification.

Export citation and abstract BibTeX RIS

10.1088/0031-9155/48/12/309