Mapping the Galactic Halo. IV. Finding Distant Giants Reliably with the Washington System

, , , , , , and

© 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Heather L. Morrison et al 2001 AJ 121 283 DOI 10.1086/318041

1538-3881/121/1/283

Abstract

We critically examine the use of the Washington photometric system (with the DDO51 filter) for identifying distant halo giants. While this is the most powerful photometric technique for isolating G and K giant stars, spectroscopic follow-up of giant candidates is vital. There are two situations in which interlopers outnumber genuine giants in the diagnostic M-51/M-T2 plot and are indistinguishable photometrically from the giants. (1) In deep surveys covering tens of square degrees, very metal-poor halo dwarfs are a significant contaminant. An example is our survey of the outer halo, where these metal-poor dwarfs dominate the number of photometric giant candidates at magnitudes fainter than V = 18 and cannot be isolated photometrically. (2) In deep surveys of smaller areas with low photometric precision, most objects in the giant region of the color-color plot are dwarfs whose photometric errors have moved them there. Color errors in M-51 and M-T2 need to be smaller than 0.03 mag to avoid this problem. An example of a survey whose photometric errors place the giant identifications under question is the survey for extratidal giants around the Carina dwarf spheroidal galaxy of Majewski et al. Accurate photometry and spectroscopic follow-up of giant candidates are essential when using the Washington system to identify the rare outer halo giants.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/318041