Brought to you by:

A publishing partnership

Exoplanets or Dynamic Atmospheres? The Radial Velocity and Line Shape Variations of 51 Pegasi and τ Bootis

, , , , , , and

© 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Timothy M. Brown et al 1998 ApJS 117 563 DOI 10.1086/313123

0067-0049/117/2/563

Abstract

The stars 51 Pegasi and τ Bootis show radial velocity variations that have been interpreted as resulting from companions with roughly Jovian mass and orbital periods of a few days. Gray and Gray & Hatzes reported that the radial velocity signal of 51 Peg is synchronous with variations in the shape of the line λ6253 Fe I; thus, they argue that the velocity signal arises not from a companion of planetary mass but from dynamic processes in the atmosphere of the star, possibly nonradial pulsations. Here we seek confirming evidence for line shape or strength variations in both 51 Peg and τ Boo, using R = 50,000 observations taken with the Advanced Fiber Optic Echelle. Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point-spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in τ Boo. For 51 Peg, our upper limit for line shape variations with 4.23 day periodicity is small enough to exclude with 10 σ confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray are also not seen, but in this case with marginal (2 σ) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes's data and for our own. τ Boo's large radial velocity amplitude and v sin i make it easier to test for pulsations in this star. Again we find no evidence for periodic line shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/313123