Skip to main content
Log in

Current perspectives on the role of thyroid hormone in growth and development of cerebellum

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The thyroid hormone (TH) is essential for growth and development of brain, including the cerebellum. Deficiency of TH during the perinatal period results in abnormal cerebellar development, which is well documented in rodent animal models. TH exerts its major effect by binding to the nuclear TH receptor (TR), a ligand-regulated transcription factor. Although TR is highly expressed in many brain regions, including the cerebellum, TH-target genes that likely play critical roles in brain development have not yet been fully clarified. At present, however, expression of many cerebellar genes is known to be altered by perinatal hypothyroidism. Interestingly, after the critical period of TH action (first 2 weeks of postnatal life in rodent cerebellum), the activities of many genes that are altered by perinatal hypothyroidism return to the same levels as those of euthyroid animal despite morphological alterations. Several prominent candidate genes that may play key roles in TH-mediated cerebellar development are discussed in this review. On the other hand, TR-mediated transcription may be modulated by various substances. The nuclear hormone receptor superfamily contains more than 40 transcriptional factors and, most of these receptors are present in the brain. Possible interactions between TR and such transcription factors are also discussed. Further, several additional issues that need to be clarified are discussed. One such issue is the discrepancy of phenotypes among TR-knockout and perinatal hypothyroid mice. Recent studies have provided several important clues to address this issue. Another current area that needs attention is the effect of endocrine disruptors on brain development. Since the molecular structures of TH and several endocrine disrupting chemicals are similar, the effect of such chemicals on brain may be exerted at least in part through the TH system. Recent studies have shown the possible interaction between TR and such chemicals. Overall, this review provides current findings regarding molecular mechanisms on TH action in cerebellar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Legrand J. Thyroid hormone effect on growth and development. In: Hennemann G, editor. Thyroid Hormone Metabolism. New York: Marcel Dekker, 1986: 503–534.

    Google Scholar 

  2. Oppenheimer JH, Schwartz HT. Molecular basis of thyroid hormone-dependent brain development. Endocrine Rev 1997; 18: 462–475.

    Article  CAS  Google Scholar 

  3. Legrand J. Morphogenetic actions of thyroid hormones. Trends Neurosci 1979; 2: 234–236.

    Article  Google Scholar 

  4. Koibuchi N, Chin WW. Mechanisms underlying neurological abnormalities resulting from developmental hypothyroidism. Curr Opin Endocrinol Diabet 1999; 6: 26–32.

    Article  Google Scholar 

  5. Koibuchi N. Thyroid hormone and cerebellar development. In: Manto M, Pandolfo M, editors. The Cerebellum and its Disorders. Cambridge: Cambridge University Press, 2001: 305–315.

    Google Scholar 

  6. Wu Y, Koenig RJ. Gene regulation by thyroid hormone. Trends Endocrinol Metab 2000; 11: 207–211.

    Article  PubMed  CAS  Google Scholar 

  7. Davis PJ, Davis FB. Nongenomic actions of thyroid hormone. In: Braverman LE, editor. Diseases of the Thyroid. Totowa: Humana Press, 1997: 17–34.

    Google Scholar 

  8. Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 1999; 9: 140–147.

    Article  PubMed  CAS  Google Scholar 

  9. Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocrine Rev 1993; 14: 184–193.

    Article  CAS  Google Scholar 

  10. Hetzel BS, Dunn JT. The iodine deficiency disorders: their nature and prevention. Ann Rev Nutr 1989; 9: 21–38.

    Article  CAS  Google Scholar 

  11. Xue-Yi C, Xin-Min J, Zhi-Hong D, Rakeman MA, Ming-Li Z, O’Donnell K, Tai Ma, Amette K, DeLong N, DeLong GR. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Eng J Med 1994; 331: 1739–1744.

    Article  Google Scholar 

  12. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbern SE, Faix JD, Klein RZ. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Eng J Med 1999; 341: 549–555.

    Article  CAS  Google Scholar 

  13. Smit BJ, Kok JH, Vulsma T, Briët JM, Boer K, Wiersinga WM. Neurologic development of the newborn and young child in relation to maternal thyroid function. Acta Pediatr 2000; 89: 291–295.

    Article  CAS  Google Scholar 

  14. Kilby MD, Gittoes N, McCabe C, Verhaeg J, Franklyn JA. Expression of thyroid receptor isoforms in the human fetal central nervous system and the effects of intrauterine growth restriction. Clin Endocrinol 2000; 53: 469–477.

    Article  CAS  Google Scholar 

  15. Calvo R, Obregón MJ, Ruiz de Ona C, Escobar del Rey F, Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. J Clin Invest 1990; 86: 889–899.

    Article  PubMed  CAS  Google Scholar 

  16. Croteau W, Davey J, Galton V, St Germain DL. Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest 1996; 98: 405–417.

    Article  PubMed  CAS  Google Scholar 

  17. Leonard J, Kaplan M, Visser T, Silva J, Larsen PR. Cerebral cortex responds rapidly to thyroid hormones. Science 1981; 214: 571–573.

    Article  PubMed  CAS  Google Scholar 

  18. Guadano-Ferraz A, Obregón MJ, St Germain DL, Bernai J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci USA 1997; 94: 10391–10396.

    Article  PubMed  CAS  Google Scholar 

  19. Bernai J, Pekonen F. Ontogenesis of the nuclear 3,5,3′-triiodothyronine receptor in the human fetal brain. Endocrinology 1984; 114: 677–679.

    Google Scholar 

  20. Polk D, Cheromcha D, Riviczky A, Fisher DA. Nuclear thyroid hormone receptors: ontogeny and thyroid hormone effects in sheep. Am J Physiol 1989; 256: E543-E549.

    PubMed  CAS  Google Scholar 

  21. Mellström B, Naranjo JR, Santos A, Gonzales AM, Bernai J. Independent expression of the a and β c-erbA genes in developing rat brain. Mol Endocrinol 1991; 5: 1339–1350.

    PubMed  Google Scholar 

  22. Bradley DJ, Towle HC, Young WS. Spatial and temporal expression of a and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system. J Neurosci 1992; 12: 2288–2302.

    PubMed  CAS  Google Scholar 

  23. Koibuchi N, Chin WW. Thyroid hormone action and brain development. Trends Endocrinol Metab 2000; 11: 123–128.

    Article  PubMed  CAS  Google Scholar 

  24. Porterfield SP, Hendrich CE. The role of thyroid hormone in prenatal and neonatal neurological development-current perspectives. Endocr Rev 1993; 14: 94–106.

    Article  PubMed  CAS  Google Scholar 

  25. Airman J. Morphological development of the rat cerebellum and some of its mechanisms. Exp Brain Res 1982; 6: 8–49.

    Google Scholar 

  26. Nicholson JL, Airman J. The effects of early hypo and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res 1972; 44: 25–36.

    Article  PubMed  CAS  Google Scholar 

  27. Nicholson JL, Airman J. Synaptogenesis in the rat cerebellum: effects of early hypo and hyperthyroidism. Science 1972; 176: 530–532.

    Article  PubMed  CAS  Google Scholar 

  28. Nicholson JL, Airman J. The effects of early hypo and hyperthyroidism on development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res 1972; 44: 13–23.

    Article  PubMed  CAS  Google Scholar 

  29. Balázs R, Brooksbandk BWL, Patel AJ, Johnson AL, Wilson DA. Incorporation of [35S] sulfate into brain constituents during development and the effects of thyroid hormone on myelination. Brain Res 1971; 30: 273–293.

    Article  PubMed  Google Scholar 

  30. Hajós F, Patel AJ, Balázs R. Effect of thyroid deficiency on the synaptic organization of the rat cerebellar cortex. Brain Res 1973; 50: 387–401.

    Article  PubMed  Google Scholar 

  31. Legrand J. Variations, en fonction de l’age, de la réponse du cervelet a l’action morphogénétique de la thyroïde chez le rat. Arch Anat Microsc Morphol Exp 1967; 56: 291–308.

    PubMed  CAS  Google Scholar 

  32. Farsetti A, Desvergne B, Hallenbeck P, Robbins J, Nikodem VM. Characterization of myelin basic protein thyroid hormone response element and its function in the context of native heterologous promoter. J Biol Chem 1992; 267: 15784–15788.

    PubMed  CAS  Google Scholar 

  33. Zou L, Hagen SG, Strait KA, Oppenheimer JH. Identification of thyroid hormone response elements in rodent pcp-2, a developmentally regulated gene of cerebellar Purkinje cells. J Biol Chem 1994; 269: 13346–13352.

    PubMed  CAS  Google Scholar 

  34. Iglesias T, Caubin J, Stunnenberg HG, Zaballos A, Bernai J, Muñoz A. Thyroid hormonedependent transcriptional repression of neural cell adhesion molecule during brain development. EMBO J 1996; 15: 4307–4316.

    PubMed  CAS  Google Scholar 

  35. Ghorbel MT, Seugnet I, Hadj-Sahraoui N, Topilko P, Levi G, Demeneix B. Thyroid hormone effects on Krox-24 transcription in the post-natal mouse brain are developmentally regulated but are not correlated with mitosis. Oncogene 1999; 18: 917–924.

    Article  PubMed  CAS  Google Scholar 

  36. Lewin GR, Barde Y-A. Physiology of the neurotrophins. Ann Rev Neurosci 1996; 19: 289–317.

    Article  PubMed  CAS  Google Scholar 

  37. Lindholm D, Castrén E, Tsoulfas P, Kolbeck R, da Penha Berzaghi M, Leingärtner A, Heisenberg C-P, Tesarollo L, Parada LF, Thoenen H. Neurotrophin-3 induced by triiodothyronine in cerebellar granule cells promotes Purkinje cell differentiation. J Cell Biol 1993; 122: 443–450.

    Article  PubMed  CAS  Google Scholar 

  38. Segal RA, Pomeroy SL, Stiles CD. Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci 1995; 15: 4970–4981.

    PubMed  CAS  Google Scholar 

  39. Segal RA, Takahashi H, McKay RDG. Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron 1992; 9: 1041–1052.

    Article  PubMed  CAS  Google Scholar 

  40. Leingärtner A, Heisenberg C-P, Kolbeck R, Thoenen H, Lindholm D. Brain-derived neurotrophic factor increases neurotrophin-3 expression in cerebellar granule neurons. J Biol Chem 1994; 269: 828–830.

    PubMed  Google Scholar 

  41. Walker P, Weichsel Jr ME, Fisher DA, Guo SM, Fisher DA. Thyroxine increases nerve growth factor concentration in adult mouse brain. Science 1979; 27: 427–429.

    Article  Google Scholar 

  42. Charrasse S, Jehan F, Confort C, Brachet P, Clos J. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts. Dev Neurosci 1992; 14: 282–289.

    Article  PubMed  CAS  Google Scholar 

  43. Giordano T, Bao Pan J, Casuto D, Watanabe S, Arneric SP. Thyroid hormone regulation of NGF, NT-3 and BDNF RNA in the adult rat brain. Mol Brain Res 1992; 16: 239–245.

    Article  PubMed  CAS  Google Scholar 

  44. Neveu I, Arenas E. Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J Cell Biol 1996; 133: 631–646.

    Article  PubMed  CAS  Google Scholar 

  45. Koibuchi N, Fukuda H, Chin WW. Promoter-specific regulation of the brain-derived neurotrophic factor (BDNF) gene by thyroid hormone in the developing rat cerebellum. Endocrinology 1999; 140:3955–3961.

    Article  PubMed  CAS  Google Scholar 

  46. Pombo PM, Barettino D, Espliguero G, Metsis M, Iglesias T, Rodriguez-Pena A. Transcriptional repression of neurotrophin receptor trkB by thyroid hormone in the developing rat brain. J Biol Chem 2000; 275: 37510–37517.

    Article  PubMed  CAS  Google Scholar 

  47. Koibuchi N, Yamaoka S, Chin WW. Effects of altered thyroid status in neurotrophin gene expression during postnatal development of the mouse cerebellum. Thyroid 2001; 11: 205–210.

    Article  PubMed  CAS  Google Scholar 

  48. Schwartz PM, Borghesani PR, Levy RL, Pormeroy SL, Segal RA. Abnormal cerebellar development and foliation in BDNF mice reveals a role for neurotrophins in CNS patterning. Neuron 1997; 19: 269–281.

    Article  PubMed  CAS  Google Scholar 

  49. Ye P, Carson J, D’Ercole AJ. In vivo action of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) in transgenic mice. J Neurosci 1995; 15: 7344–7356.

    PubMed  CAS  Google Scholar 

  50. Ye P, Xing Y, Dai Z, D’Ercole AJ. In vivo action of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: evidence that IGF-I increases proliferation of granule cell progenitors. Dev Brain Res 1996; 95: 44–54.

    Article  CAS  Google Scholar 

  51. Elder DA, Karayal AF, D’Ercole AJ, Calikoglu AS. Effects of hypothyroidism on insulinlike growth factor-I expression during brain development in mice. Neurosci Lett 2000; 293: 99–102.

    Article  PubMed  CAS  Google Scholar 

  52. Wolf M, Ingbar SH, Moses AC. Thyroid hormone and growth hormone interact to regulate insulin-like growth factor-I messenger ribonucleic and circulating levels in the rat. Endocrinology 1989; 125:2905–2914.

    Article  PubMed  CAS  Google Scholar 

  53. Curran T, D’Arcangelo GD. Role of reelin in the control of brain development. Brain Res Rev 1998; 26: 285–294.

    Article  PubMed  CAS  Google Scholar 

  54. Alvarez-Dolado M, Ruiz M, Del Rio JA, Alcántara S, Burgaya F, Sheldon M, Nakajima K, Bernai J, Howell BW, Curran T, Soriano E, Munoz A. Thyroid hormone regulates reelin and dabl expression during brain development. J Neurosci 1999; 19: 6979–6993.

    PubMed  CAS  Google Scholar 

  55. Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E, Ernfors P, Ibanez C. BDNF regulates reelin expression and Cajal-Rezius cell development in the cerebral cortex. Neuron 1998; 21: 305–315.

    Article  PubMed  CAS  Google Scholar 

  56. Rutishauser U. Adhesion molecule of the nervous system. Curr Opin Neurobiol 1993; 3: 709–715.

    Article  PubMed  CAS  Google Scholar 

  57. Erickson HP. Tenascin-C, tenascin-R, tenascin-X: a family of talented proteins in search of functions. Curr Opin Cell Biol 1993; 5: 869–876.

    Article  PubMed  CAS  Google Scholar 

  58. Iglesias T, Caubin J, Stunnenberg HG, Zaballos A, Bernai J, Munoz A. Thyroid hormonedependent transcriptional repression of neural cell adhesion molecule during brain development. EMBO J 1996; 15: 4307–4316.

    PubMed  CAS  Google Scholar 

  59. Alvarez-Dolado M, González-Sancho JM, Bernai J, Munoz A. Developmental expression of tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 1998; 84: 309–322.

    Article  PubMed  CAS  Google Scholar 

  60. Alvarez-Dolado M, Cuadrado A, Navarro-Yubero C, Sonderegger P, Furley AJ, Munoz A. Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain. Mol Cell Neurosci 2000; 16: 499–514.

    Article  PubMed  CAS  Google Scholar 

  61. Lopes da Silva S, Burbach PH. The nuclear hormone-receptor family in the brain: classics and orphans. Trends Neurosci 1995; 18: 542–548.

    Article  Google Scholar 

  62. Sidman RL, Lane PW, Dickie MM. Staggerer, a new mutation in the mouse affecting the cerebellum. Science 1962; 137: 610–612.

    Article  PubMed  CAS  Google Scholar 

  63. Koibuchi N, Chin WW. RORα gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation. Endocrinology 1998; 139: 2335–2341.

    Article  PubMed  CAS  Google Scholar 

  64. Koibuchi N, Liu Y, Fukuda H, Takeshita A, Yen PM, Chin WW. RORa augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology 1999; 140: 1356–1364.

    Article  PubMed  CAS  Google Scholar 

  65. Messer A, Hatch K. Persistence of cerebellar thymidine kinase in staggerer and hypothyroid mutants. J Neurogenet 1984; 1: 239–248.

    Article  PubMed  CAS  Google Scholar 

  66. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, Russel LB, Mueller KL, van Berkel V, Birren BW, Kruglyak L, Lander ES. Disruption of the nuclear hormone receptor RORa in staggerer mice. Nature 1996; 379: 736–739.

    Article  PubMed  CAS  Google Scholar 

  67. Anderson GW, Larson RJ, Oas DR, Sandhofer CR, Schwartz HL, Mariash CN, Oppenheimer JH. Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. J Biol Chem 1998; 273: 16391–16399.

    Article  PubMed  CAS  Google Scholar 

  68. Schwartz HL, Ross ME, Oppenheimer JH. Lack of effect of thyroid hormone on late fetal rat brain development. Endocrinology 1997; 138: 3119–3124.

    Article  PubMed  CAS  Google Scholar 

  69. Chomez P, Neveu I, Mansén A, Kiesler E, Larsson L, Vennström B, Arenas E. Increased cell death and delayed development in the cerebellum of mice lacking the rev-erbAa orphan receptor. Development 2000; 127: 1489–1498.

    PubMed  CAS  Google Scholar 

  70. Lazar MA, Hodin RA, Darling DS, Chin WW. A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbAa transcriptional unit. Mol Cell Biol 1989; 9: 1128–1136.

    PubMed  CAS  Google Scholar 

  71. Forman BM, Chen J, Blumberg B, Kliewer SA, Henshaw R, Ong ES, Evans RM. Cross talk among RORα1 and the rev-erb family of orphan nuclear receptors. Mol Endocrinol 1994; 8: 1253–1261.

    Article  PubMed  CAS  Google Scholar 

  72. Thompson CC. Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and hairless homolog. J Neurosci 1996; 16: 7832–7840.

    PubMed  CAS  Google Scholar 

  73. Thompson CC, Bottcher M. The product of a thyroid hormoneresponsive gene interacts with thyroid hormone receptors. Proc Natl Acad Sci USA 1997; 94: 8527–8532.

    Article  PubMed  CAS  Google Scholar 

  74. Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 1999; 13: 1647–1652.

    Article  PubMed  CAS  Google Scholar 

  75. Chantoux F, Francon J. Thyroid hormone regulates the expression of NeuroD/BHF during the development of rat cerebellum. Mol Cell Endocrinol 2002; 194: 157–163.

    Article  PubMed  CAS  Google Scholar 

  76. Lee J-K, Cho J-H, Hwang W-S, Lee Y-D, Reu D-S, Suh-Kim H. Expression of NeuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system. Dev Dyn 2000; 217: 361–367.

    Article  PubMed  CAS  Google Scholar 

  77. Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell 1992; 70: 375–387.

    Article  PubMed  CAS  Google Scholar 

  78. Jones KE, Brubaker JH, Chin WW. Evidence that phosphorylation events participate in thyroid hormone action. Endocrinology 1994; 134: 543–548.

    Article  PubMed  CAS  Google Scholar 

  79. Tzagarakis-Foster C, Privasky ML. Phosphorylation of thyroid hormone receptor by protein kinase A regulates DNA recognition by specific inhibition of receptor monomer binding. J Biol Chem 1998; 273: 10926–10932.

    Article  PubMed  CAS  Google Scholar 

  80. Matthews RP, Guthrie CR, Wailes LM, Zhao X, Means AR, McKnight GS. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol 1994; 14: 6107–6116.

    PubMed  CAS  Google Scholar 

  81. Kuno-Murata M, Koibuchi N, Fukuda H, Murata M, Chin WW. Augmentation of thyroid hormone receptor-mediated transcription by Ca2+ /calmodulin-dependent protein kinase type IV. Endocrinology 2000; 141: 2275–2278.

    Article  PubMed  CAS  Google Scholar 

  82. Ribar TJ, Rodriguiz RM, Khiroug L, Wetsel WC, Augustine GJ, Means AR. Cerebellar defects in Ca2+ /calmodulin kinase IV-deficient mice. J Neurosci 2000; 20(RC107): 1–5.

    Google Scholar 

  83. Davis PJ, Shih A, Lin H-Y, Martino LJ, Davis F. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 2000; 275: 38032–38039.

    Article  PubMed  CAS  Google Scholar 

  84. Carlson DJ, Strait KA, Schwartz HL, Oppenheimer JH. Immunofluorescent localization of thyroid hormone receptor isoforms in glial cells of rat brain. Endocrinology 1994; 135: 1831–1836.

    Article  PubMed  CAS  Google Scholar 

  85. Leonard JL, Farwell AP, Yen PM, Chin WW, Stula M. Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells. Endocrinology 1994; 135: 548–555.

    Article  PubMed  CAS  Google Scholar 

  86. Pesetsky I. The development of abnormal cerebellar astrocytes in young hypothyroid rats. Brain Res 1973; 63: 456–460.

    Article  PubMed  CAS  Google Scholar 

  87. Faivre-Sarrailh C, Rami A, Fages C, Tardy M. Effect of thyroid deficiency on glial fibrillary acidic protein (GFAP) and GFAPmRNA in the cerebellum and hippocampal formation of the developing rat. Glia 1991; 4: 276–284.

    Article  PubMed  CAS  Google Scholar 

  88. Pietrzykowski A, Farwell A. Effect of thyroid hormone on laminin (gamma) chain mRNA expression in the developing rat cerebellum. Proc 72nd Ann Meeting of Amer Thyroid Assoc (Abstract) 1999: 82.

  89. Siegrist-Kaiser CA, Juge-Aubry C, Tranter MP, Ekenbarger DM, Leonard JL. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. J Biol Chem. 1990; 265: 5296–5302.

    PubMed  CAS  Google Scholar 

  90. Farwell AP, Dubord-Tomasetti SA. Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology 1999; 140: 5014–5021.

    Article  PubMed  CAS  Google Scholar 

  91. Göthe S, Wang Z, Ng L, Kindblom JM, Campos Barros A, Ohlsson C, Vennström B, Forrest D. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Gene Dev 1999; 13: 1329–1341.

    Article  PubMed  Google Scholar 

  92. Hashimoto K, Curty FH, Borges PP, Lee CE, Abel EDA, Elmquist JK, Cohen RN, Wondisford FE. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA 2001; 98: 3998–4003.

    Article  PubMed  CAS  Google Scholar 

  93. Morte B, Manzano J, Scanlan T, Vennström B, Bernai J. Deletion of the thyroid hormone receptor α1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 2001; 99: 3985–3989.

    Article  CAS  Google Scholar 

  94. Brouwer A, Ahlborg UG, Van den Berg M, Birnbaum LS, Boersma ER, Bosveld B, Denison MS, Gray LE, Hagmer L, Holene E. Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. Eur J Pharmacol Environ Toxicol Pharmacol Section 1995; 293: 1–40.

    Article  CAS  Google Scholar 

  95. Porterfield SP. Thyroidal dysfunction and environmental chemicals-potential impact on brain development. Environment Health Perspect 2000; 108: 433–437.

    Article  CAS  Google Scholar 

  96. Ness DK, Schantz SL, Moshtaghian J, Hansen LG. Effects of perinatal exposure to specific PCB congeners on thyroid hormone concentration and thyroid histology in the rat. Toxicol Lett 1993; 68: 311–323.

    Article  PubMed  CAS  Google Scholar 

  97. Zoeller RT, Dowling ALS, Vas AA. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects of the expression of RC3/neuroglanin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology 2000; 141: 181–189.

    Article  PubMed  CAS  Google Scholar 

  98. Iwasaki T, Miyazaki W, Takeshita A, Kuroda Y, Koibuchi N. Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem Biophys Res Commun 2002; 299: 384–388.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, N., Jingu, H., Iwasaki, T. et al. Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2, 279–289 (2003). https://doi.org/10.1080/14734220310011920

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310011920

Keywords

Navigation