Skip to main content
Log in

Persistence of spinocerebellar afferent topography following hereditary Purkinje cell degeneration

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar Purkinje neurons play a significant role in the development and early maintenance of cerebellar afferent topography. Anterograde intraaxonal labeling experiments were designed to identify any role for Purkinje cells in maintaining spinocerebellar mossy fiber afferent topography in shaker mutant rats with adult onset Purkinje cell heredodegeneration. Following the death of Purkinje cells myelinated spinocerebellar axons persist and their terminal mossy fiber morphology remains normal in appearance and size. The relative percentage of labeled projections to each of the five anterior lobe lobules was comparable in mutant and normal rats. Finally, unfolded reconstructions of the anterior lobe illustrated that the organization of labeled terminals in clusters, patches and discontinuous parasagittally oriented stripes or transversely oriented bands were spatially distributed the same in both normal and mutant rats. These findings strongly infer that Purkinje cells are not necessary for the persistence and maintenance of spinocerebellar afferent pathways in adult animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sotelo C. Cell interactions underlying Purkinje cell replacement by neural grafting in the pcd mutant cerebellum. Can J Neurol Sci 1993; 20: S43-S52.

    PubMed  Google Scholar 

  2. Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci USA 1986; 83: 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  3. Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 1987; 20: 1–22.

    Article  PubMed  CAS  Google Scholar 

  4. Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience 1993; 55: 1–21.

    Article  PubMed  CAS  Google Scholar 

  5. Heckroth JA, Hobart NJ, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol 1998; 154: 336–352.

    Article  PubMed  CAS  Google Scholar 

  6. Tolbert DL, Heckroth J. Purkinje cell transplants in Shaker mutant rats with hereditary Purkinje cell degeneration and ataxia. Exp Neurol 1998; 153: 255–267.

    Article  PubMed  CAS  Google Scholar 

  7. Triarhou LC, Low WC, Ghetti B. Intraparenchymal grafting of cerebellar cell suspensions to the deep cerebellar nuclei of pcd mutant mice, with particular emphasis on re-establishment of a Purkinje cell cortico-nuclear projection. Anat Embryol 1992; 185: 409–420.

    Article  PubMed  CAS  Google Scholar 

  8. Bloedel JR, Courville J. 1981 Cerebellar afferent systems. In: Brooks, VB editor. Handbook of Physiology; The Nervous System (Section 1) Motor Control (II). American Physiological Society, 1981: 735–829.

  9. Rossi F, Borsello T, Vaudano E, Strata P. Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat. Neuroscience 1993; 53: 759–778.

    Article  PubMed  CAS  Google Scholar 

  10. Heckroth JA, Eisenman LM. Olivary morphology and olivocerebellar topography in adult Lurcher mutant mice. J Comp Neurol 1991; 312: 641–651.

    Article  PubMed  CAS  Google Scholar 

  11. Houck D, Heckroth JA, Tolbert DL. Pontine atrophy in the murine cerebellar mutant Lurcher. FASEB J Abstracts, part I 1995; 9: 252.

    Google Scholar 

  12. Vogel MW, Prittie J. Topographic spinocerebellar mossy fiber projections are maintained in the Lurcher mutant. J Comp Neurol 1994; 343: 341–351.

    Article  PubMed  CAS  Google Scholar 

  13. Tolbert DL, Alisky JM, Clark BR. Lower thoracic-upper lumber spinocerebellar projections in rats: A complex topography revealed in computer reconstructions of the unfolded anterior lobe. Neuroscience 1993; 55: 755–774.

    Article  PubMed  CAS  Google Scholar 

  14. Alisky JM, Tolbert DL. Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe. Neuroscience 1997; 80: 373–388.

    Article  PubMed  CAS  Google Scholar 

  15. Tolbert DL, Clark BR. Olivocerebellar projections modify hereditary Purkinje cell degeneration. Neuroscience 2000; 101: 417–433.

    Article  PubMed  CAS  Google Scholar 

  16. Mesulam MM. Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue-reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 1978; 26: 106–117.

    PubMed  CAS  Google Scholar 

  17. Streinzer W, Krammer EB. Horseradish peroxidase histochemistry on mounted sections from embedded specimen: a simple method for serial reconstruction of neuronal projection. J Neurosci Meth 1986; 17: 297–301.

    Article  CAS  Google Scholar 

  18. Yamada J, Shirao K, Kitamura T, Sato H. Trajectory of spinocerebellar fibers passing through the inferior and superior cerebellar peduncles in the rat spinal cord: a study using horseradish peroxidase with pedunculotomy. J Comp Neurol 1991; 304: 147–160.

    Article  PubMed  CAS  Google Scholar 

  19. Xu Q, Grant G. Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the anterior lobe: an experimental anatomical study in the cat with retrograde tracing techniques. J Comp Neurol 1994; 345: 288–302.

    Article  PubMed  CAS  Google Scholar 

  20. Arsénio-Nunes ML, Sotelo C. Development of the spinocerebellar system in the postnatal rat. J Comp Neurol 1985; 237: 291–306.

    Article  PubMed  Google Scholar 

  21. Arsénio-Nunes ML, Sotelo C, Wehrlé R. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element. J Comp Neurol 1985; 273: 120–136.

    Article  Google Scholar 

  22. Tolbert DL, Pittman T, Alisky JM, Clark BR. Chronic NMDA receptor blockade or muscimol inhibition of cerebellar cortical neuronal activity alters the development of spinocerebellar afferent topography. Dev Brain Res 1994; 80: 268–274.

    Article  CAS  Google Scholar 

  23. Ghetti B, Norton J, Triarhou LC. Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol 1987; 260: 409–422.

    Article  PubMed  CAS  Google Scholar 

  24. Phillips RJS. Lurcher, a new gene in linkage group XI of the house mouse. J Genet 1960; 57: 35–42.

    Article  Google Scholar 

  25. Caddy KWT, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Phil Trans R Soc Lond B 1979; 287: 167–201.

    Article  CAS  Google Scholar 

  26. Berretta S, Perciavalle V, Poppele RE. Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum. J Comp Neurol 1991; 305: 273–281.

    Article  PubMed  CAS  Google Scholar 

  27. Tolbert DL, Ewald M, Gutting J, La Regina MC. Spatial and temporal pattern of Purkinje cell degeneration in shaker mutant rats with hereditary cerebellar ataxia. J Comp Neurol 1995; 355: 490–507.

    Article  PubMed  CAS  Google Scholar 

  28. La Regina MC, Yates-Siilata K, Woods L, Tolbert D. Preliminary characterization of hereditary cerebellar ataxia in rats. Lab Animal Sci 1992; 42: 19–26.

    Google Scholar 

  29. Ewald M. Quantitative analysis of cerebellar neurons in shaker mutant rats with hereditary Purkinje cell degeneration and ataxia. Unpublished Master’s Thesis 1995.

  30. Gravel C, Hawkes R. Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol 1990; 291: 79–102.

    Article  PubMed  CAS  Google Scholar 

  31. Ji Z, Hawkes R. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 1994; 61: 935–954.

    Article  PubMed  CAS  Google Scholar 

  32. Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci 2000; 23: 217–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Tolbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolbert, D.L., Knight, T.L. Persistence of spinocerebellar afferent topography following hereditary Purkinje cell degeneration. Cerebellum 2, 31–38 (2003). https://doi.org/10.1080/14734220309427

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220309427

Keywords

Navigation