Skip to main content

Advertisement

Log in

Characterization of peripheral blood human immunodeficiency virus isolates from Hispanic women with cognitive impairment

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus type 1 (HIV-1) tropism plays an important role in HIV-associated dementia. In this study, aimed at determining if the tropism and coreceptor usage of circulating viruses correlates with cognitive function, the authors isolated and characterized HIV from the peripheral blood of 21 Hispanic women using antiretroviral therapy. Macrophage tropism was determined by inoculation of HIV isolates onto monocyte-derived macrophages and lymphocyte cultures. To define coreceptor usage, the HIV isolates were inoculated onto the U87.CD4 glioma cell lines with specific CCR5 and CXCR4 coreceptors. HIV isolates from cognitively impaired patients showed higher levels of replication in mitogen-stimulated peripheral blood mononuclear cells than did isolates from patients with normal cognition (P < .05). The viral growth of HIV primary isolates in macrophages and lymphocytes did not differ between patients with and those without cognitive impairment. However, isolates from the cognitively impaired women preferentially used the X4 coreceptor (P < .05). These phenotypic studies suggest that cognitively impaired HIV-infected women receiving treatment may have a more highly replicating and more pathogenic X4 virus in the circulation that could contribute to their neuropathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Academy of Neurology AIDS Task Force 1991. Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a working group of the American Academy of Neurology AIDS task force. Neurol. 41: 778–785.

    Google Scholar 

  • American Academy of Neurology AIDS Task Force 1996. Clinical confirmation of the American Academy of Neurology algorithm for HIV-1-associated cognitive/motor disorder. The Dana Consortium on Therapy for HIV Dementia and Related Cognitive Disorders. Neurol. 47: 1247–1253.

    Google Scholar 

  • Arroyo MA, Tien H, Pagan M, Swanstrom R, Hillyer GV, Cadilla CL, Melendez-Guerrero LM (2002). Virologic risk factors for vertical transmission of HIV type 1 in Puerto Rico. AIDS Res Hum Retroviruses 18: 447–460.

    Article  PubMed  CAS  Google Scholar 

  • Bajetto A, Bonavia R, Barbero S, Piccioli P, Costa A, Florio T, Schettini G (1999). Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73: 2348–2357.

    Article  PubMed  CAS  Google Scholar 

  • Bakri Y, Amzazi S, Mannioui A, Benjouad A (2001). The susceptibility of macrophages to human immunodeficiency virus type 1 X4 isolates depends on their activation state. Biomed Pharmacother 55: 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Bannert N, Schenten D, Craig S, Sodroski J (2000). The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J Virol 74: 10984–10993.

    Article  PubMed  CAS  Google Scholar 

  • Berger EA, Doms RW, Fenyo EM, Korber BT, Littman DR, Moore JP, Sattentau QJ, Schuitemaker H, Sodroski J, Weiss RA (1998). A new classification for HIV-1. Nature 391: 240.

    Article  PubMed  CAS  Google Scholar 

  • Berger EA, Murphy PM, Farber JM (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17: 657–700.

    Article  PubMed  CAS  Google Scholar 

  • Burkala EJ, He J, West JT, Wood C, Petito CK (2005). Compartmentalization of HIV-1 in the central nervous system: role of the choroid plexus. AIDS 19: 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Chang MI, Panorchan P, Dobrowsky TM, Tseng Y, Wirtz D (2005). Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells. J Virol 79: 14748–14755.

    Article  PubMed  CAS  Google Scholar 

  • D’Aversa TG, Eugenin EA, Berman JW (2005). NeuroAIDS: contributions of the human immunodeficiency virus-1 proteins Tat and gp120 as well as CD40 to microglial activation. J Neurosci Res 81: 436–446.

    Article  PubMed  Google Scholar 

  • Delobel P, Sandres-Saune K, Cazabat M, Pasquier C, Marchou B, Massip P, Izopet J (2005). R5 to X4 switch of the predominant HIV-1 population in cellular reservoirs during effective highly active antiretroviral therapy. J Acquir Immune Defic Syndr 38: 382–392.

    Article  PubMed  Google Scholar 

  • Di Stefano M, Monno L, Fiore JR, Buccoliero G, Appice A, Perulli LM, Pastore G, Angarano G (1998). Neurological disorders during HIV-1 infection correlate with viral load in cerebrospinal fluid but not with virus phenotype. AIDS 12: 737–743.

    Article  PubMed  Google Scholar 

  • Diesing TS, Swindells S, Gelbard H, Gendelman HE (2002). HIV-1-associated dementia: a basic science and clinical perspective. AIDS Read 12: 358–368.

    PubMed  Google Scholar 

  • Dou H, Kingsley JD, Mosley RL, Gelbard HA, Gendelman HE (2004). Neuroprotective strategies for HIV-1 associated dementia. Neurotox Res 6: 503–521.

    Article  PubMed  Google Scholar 

  • Feige U, Overwien B, Sorg C (1982). Purification of human blood monocytes by hypotonic density gradient centrifugation in Percoll. J Immunol Methods 54: 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Smith T, Rappaport J (2005). Evolving paradigms in the pathogenesis of HIV-1-associated dementia. Expert Rev Mol Med 7: 1–26.

    Article  PubMed  Google Scholar 

  • Galan I, Jimenez JL, Gonzalez-Rivera M, De Jose MI, Navarro ML, Ramos JT, Mellado MJ, Gurbindo MD, Bellon JM, Resino S, Cabrero E, Munoz-Fernandez MA (2004). Virological phenotype switches under salvage therapy with lopinavir-ritonavir in heavily pretreated HIV-1 vertically infected children. AIDS 18: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Anderson E, Melendez L, Zheng J (2006). Chemokines and their receptors in HIV-1 neuropathogenesis: protection versus injury. New York: Springer.

    Google Scholar 

  • Goodenow MM, Collman RG (2006). HIV-1 coreceptor preference is distinct from target cell tropism: a dual-parameter nomenclature to define viral phenotypes. J Leukoc Biol 80: 965–972.

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001). Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75: 10073–10089.

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Sterjovski J, Churchill M, Witlox K, Gray L, Cunningham A, Wesselingh S (2004). The role of viral coreceptors and enhanced macrophage tropism in human immunodeficiency virus type 1 disease progression. Sex Health 1: 23–34.

    Article  PubMed  Google Scholar 

  • Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, Farzan M, Wang H, Bell JE, Kunstman K, Moore JP, Wolinsky SM, Gabuzda D (2002). Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 76: 6277–6292.

    Article  PubMed  CAS  Google Scholar 

  • Gray L, Sterjovski J, Churchill M, Ellery P, Nasr N, Lewin SR, Crowe SM, Wesselingh SL, Cunningham AL, Gorry PR (2005). Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337: 384–398.

    Article  PubMed  CAS  Google Scholar 

  • Harrington PR, Haas DW, Ritola K, Swanstrom R (2005). Compartmentalized human immunodeficiency virus type 1 present in cerebrospinal fluid is produced by short-lived cells. J Virol 79: 7959–7966.

    Article  PubMed  CAS  Google Scholar 

  • Hibbitts S, Reeves JD, Simmons G, Gray PW, Epstein LG, Schols D, de Clercq E, Wells TN, Proudfoot AE, Clapham PR (1999). Coreceptor ligand inhibition of fetal brain cell infection by HIV type 1. AIDS Res Hum Retroviruses 15: 989–1000.

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD (2005). Structure of a V3-containing HIV-1 gp120 core. Science 310: 1025–1028.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA (1996). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2: 1240–1243.

    Article  PubMed  CAS  Google Scholar 

  • Johnston ER, Zijenah LS, Mutetwa S, Kantor R, Kittinunvorakoon C, Katzenstein DA (2003). High frequency of syncytium-inducing and CXCR4-tropic viruses among human immunodeficiency virus type 1 subtype C-infected patients receiving antiretroviral treatment. J Virol 77: 7682–7688.

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Power C (2005). Regulation of neural cell survival by HIV-1 infection. Neurobiol Dis 2006 Jan; 21(1): 1–17.

    Article  Google Scholar 

  • Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, Wolinsky SM (1994). Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol 68: 7467–7481.

    PubMed  CAS  Google Scholar 

  • Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R (2005). Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111: 194–213.

    Article  PubMed  Google Scholar 

  • Kwa D, Vingerhoed J, Boeser-Nunnink B, Broersen S, Schuitemaker H (2001). Cytopathic effects of non-syncytium-inducing and syncytium-inducing human immunodeficiency virus type 1 variants on different CD4(+)-T-cell subsets are determined only by coreceptor expression. J Virol 75: 10455–10459.

    Article  PubMed  CAS  Google Scholar 

  • Lathey JL, Brambilla D, Goodenow MM, Nokta M, Rasheed S, Siwak EB, Bremer JW, Huang DD, Yi Y, Reichelderfer PS, Collman RG (2000). Coreceptor usage was more predictive than NSI/SI phenotype for HIV replication in macrophages: is NSI/SI phenotyping sufficient? J Leukoc Biol 68: 324–330.

    PubMed  CAS  Google Scholar 

  • Lee B, Sharron M, Blanpain C, Doranz BJ, Vakili J, Setoh P, Berg E, Liu G, Guy HR, Durell SR, Parmentier M, Chang CN, Price K, Tsang M, Doms RW (1999). Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem 274: 9617–9626.

    Article  PubMed  CAS  Google Scholar 

  • Mack M, Pfirstinger J, Haas J, Nelson PJ, Kufer P, Riethmuller G, Schlondorff D (2005). Preferential targeting of CD4-CCR5 complexes with bifunctional inhibitors: a novel approach to block HIV-1 infection. J Immunol 175: 7586–7593.

    PubMed  CAS  Google Scholar 

  • Marder K, Tang MX, Mejia H, Alfaro B, Cote L, Louis E, Groves J, Mayeux R (1996). Risk of Parkinson’s disease among first-degree relatives: a community-based study. Neurology 47: 155–160.

    PubMed  CAS  Google Scholar 

  • McArthur JC, Sacktor N, Selnes O (1999). Human immunodeficiency virus-associated dementia. Semin Neurol 19: 129–150.

    Article  PubMed  CAS  Google Scholar 

  • Melendez-Guerrero LM, Arroyo MA, Vega ME, Jimenez E, Hillyer GV, Cadilla CL (2001). Characterization of HIV isolates from Puerto Rican maternal-infant pairs reveal predominance of non-syncytium inducing (NSI) variants with CCR5 genotype. Cell Mol Biol (Noisy-le-grand) 47: OL39-OL47 (published online).

    CAS  Google Scholar 

  • Nath A (2002). Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2): S193-S198.

    Article  PubMed  CAS  Google Scholar 

  • Neil SJ, Aasa-Chapman MM, Clapham PR, Nibbs RJ, McKnight A, Weiss RA (2005). The promiscuous CC chemokine receptor D6 is a functional coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and HIV-2 on astrocytes. J Virol 79: 9618–9624.

    Article  PubMed  CAS  Google Scholar 

  • Pillai SK, Kosakovsky Pond SL, Liu Y, Good BM, Strain MC, Ellis RJ, Letendre S, Smith DM, Gunthard HF, Grant I, Marcotte TD, Allen McCutchan J, Richman DD, Wong JK (2006). Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain 2006 Jul, 129(Pt): 1872–1883.

    Google Scholar 

  • Poveda E, Briz V, Quinones-Mateu M, Soriano V (2006). HIV tropism: diagnostic tools and implications for disease progression and treatment with entry inhibitors. AIDS 20: 1359–1367.

    Article  PubMed  Google Scholar 

  • Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R, Haapasalo H, Krohn K (1995). Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 9: 1001–1008.

    Article  PubMed  CAS  Google Scholar 

  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996). Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382: 722–725.

    Article  PubMed  CAS  Google Scholar 

  • Sharma D, Balamurali MM, Chakraborty K, Kumaran S, Jeganathan S, Rashid U, Ingallinella P, Varadarajan R (2005). Protein minimization of the gp120 binding region of human CD4. Biochemistry 44: 16192–16202.

    Article  PubMed  CAS  Google Scholar 

  • Shiramizu B, Gartner S, Williams A, Shikuma C, Ratto-Kim S, Watters M, Aguon J, Valcour V (2005). Circulating proviral HIV DNA and HIV-associated dementia. AIDS 19: 45–52.

    Article  PubMed  Google Scholar 

  • Simmons G, Wilkinson D, Reeves JD, Dittmar MT, Beddows S, Weber J, Carnegie G, Desselberger U, Gray PW, Weiss RA, Clapham PR (1996). Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol 70: 8355–8360.

    PubMed  CAS  Google Scholar 

  • Sirois S, Sing T, Chou KC (2005). HIV-1 gp120 V3 loop for structure-based drug design. Curr Protein Pept Sci 6: 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Skrabal K, Trouplin V, Labrosse B, Obry V, Damond F, Hance AJ, Clavel F, Mammano F (2003). Impact of antiretroviral treatment on the tropism of HIV-1 plasma virus populations. AIDS 17: 809–814.

    Article  PubMed  CAS  Google Scholar 

  • Spudich SS, Huang W, Nilsson AC, Petropoulos CJ, Liegler TJ, Whitcomb JM, Price RW (2005). HIV-1 chemokine coreceptor utilization in paired cerebrospinal fluid and plasma samples: a survey of subjects with viremia. J Infect Dis 191: 890–898.

    Article  PubMed  CAS  Google Scholar 

  • Steain MC, Wang B, Dwyer DE, Saksena NK (2004). HIV-1 co-infection, superinfection and recombination. Sex Health 1: 239–250.

    Article  PubMed  Google Scholar 

  • Strain MC, Letendre S, Pillai SK, Russell T, Ignacio CC, Gunthard HF, Good B, Smith DM, Wolinsky SM, Furtado M, Marquie-Beck J, Durelle J, Grant I, Richman DD, Marcotte T, McCutchan JA, Ellis RJ, Wong JK (2005). Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol 79: 1772–1788.

    Article  PubMed  CAS  Google Scholar 

  • Watabe T, Kishino H, Okuhara Y, Kitazoe Y (2005). Fold recognition of the HIV-1 V3 loop and flexibility of its crown structure during the course of adaptation to a host. Genetics 2006 Mar; 172(3): 1385–1396.

    Google Scholar 

  • Weiner RS, Shah VO (1980). Purification of human monocytes: isolation and collection of large numbers of peripheral blood monocytes. J Immunol Methods 36: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, Hickey WF (2002). Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25: 537–562.

    Article  PubMed  CAS  Google Scholar 

  • Wojna V, Carlson KA, Luo X, Mayo R, Melendez LM, Kraiselburd E, Gendelman HE (2004a). Proteomic fingerprinting of human immunodeficiency virus type 1-associated dementia from patient monocyte-derived macrophages: a case study. J NeuroVirol 10(Suppl 1): 74–81.

    PubMed  CAS  Google Scholar 

  • Wojna V, Skolasky RL, Hechavarria R, Mayo R, Selnes O, McArthur JC, Melendez LM, Maldonado E, Zorrilla CD, Garcia H, Kraiselburd E, Nath A (2006). Prevalence of human immunodeficiency virus-associated cognitive impairment in a group of Hispanic women at risk for neurological impairment. J NeuroVirol 12: 356–364.

    Article  PubMed  Google Scholar 

  • Yi Y, Chen W, Frank I, Cutilli J, Singh A, Starr-Spires L, Sulcove J, Kolson DL, Collman RG (2003). An unusual syncytia-inducing human immunodeficiency virus type 1 primary isolate from the central nervous system that is restricted to CXCR4, replicates efficiently in macrophages, and induces neuronal apoptosis. J NeuroVirol 9: 432–441.

    PubMed  CAS  Google Scholar 

  • Yi Y, Lee C, Liu QH, Freedman BD, Collman RG (2004). Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis. J NeuroVirol 10(Suppl 1): 91–96.

    PubMed  CAS  Google Scholar 

  • Yi Y, Shaheen F, Collman RG (2005). Preferential use of CXCR4 by R5X4 human immunodeficiency virus type 1 isolates for infection of primary lymphocytes. J Virol 79: 1480–1486.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loyda M. Meléndez.

Additional information

This work was supported by the following grants: NIH-SNRP 1 U54NS430, NIH-MBRS-SCORE-SO6GMO822, NIH-RCMI-CRC P20RR11126, and GM61838 from the MBRS-RISE Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieves, D.M.T., Plaud, M., Wojna, V. et al. Characterization of peripheral blood human immunodeficiency virus isolates from Hispanic women with cognitive impairment. Journal of NeuroVirology 13, 315–327 (2007). https://doi.org/10.1080/13550280701361508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280701361508

Keywords

Navigation