Skip to main content

Advertisement

Log in

CXCR4 is the primary receptor for feline immunodeficiency virus in astrocytes

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Feline astrocytes were productively infected with the Crandell feline kidney (CrFK) cell-adapted feline immunodeficiency virus (FIV) Petaluma strain in a primary culture. They expressed mRNA of CXCR4, and the FIV infection was blocked by stromal cell-derived factor 1α (SDF-1α), SDF-1β, or the bicyclam AMD3100 in a dose-dependent manner. These observations suggest that, like FIV infection in CrFK cells and lymphocytes, the virus uses CXCR4 as a primary receptor for infecting astrocytes and this can be a possible natural model for AIDS dementia complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adie-Biassette H, Levy Y, Colombel M, Poron F, Natcher S, Keohance C, Gray F (1995). Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 21: 218–227.

    Article  Google Scholar 

  • Bleui CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996). The lymphocyte chemoattractant SDF-1 is a ligand for LESTER/fusin and blocks HIV-1 entry. Nature 282: 829–833.

    Article  Google Scholar 

  • Brown WC, Bissey L, Logan KS, Pedersen NC, Elder JH, Collisson EW (1991). Feline immunodeficiency virus infects both CD4+ and CD8+ T lymphocytes. J Virol 65: 3359–3364.

    CAS  PubMed  Google Scholar 

  • Cohen S (1960). Purification of nerve-promoting protein from the mouse salivary gland and its neurocytotoxic antiserum. Proc Natl Acad Sci USA 46: 302–311.

    Article  CAS  PubMed  Google Scholar 

  • De Clercq E, Yamamoto N, Pauwels R, Baba M, Schols D, Nakashima H, Balzarini J, Debyser Z, Murrer BA, Schwartz D, Thornton D, Bridger GJ, Fricker S, Henson GW, Abrams MJ, Picker D (1992). Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci USA 89: 5286–5290.

    Article  PubMed  Google Scholar 

  • De Clercq E, Yamamoto N, Pauwels R, Balzarini J, Witvrouw M, De Vreese K, Debyser Z, Rosenwirth B, Peichl P, Datema R, Thornton D, Skerlj R, Gaul F, Padmanabhan S, Bridger G, Henson G, Abrams M (1994). Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother 38: 668–674.

    PubMed  Google Scholar 

  • Dow SW, Poss ML, Hoover EA (1990). Feline immunodeficiency virus: A neurotropic lentivirus. J Acquired Immune Defic Syndr 3: 658–668.

    CAS  Google Scholar 

  • Dowson VL, Dowson TM, Uhl GR, Snyder SH (1993). HIV-1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci USA 90: 3256–3259.

    Article  Google Scholar 

  • Egberink HF, De Clercq E, Van Vliet ALW, Balzarini J, Bridger GJ, Henson G, Horzinek MC, Schols D (1999). Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication. J Virol 73: 6346–6352.

    CAS  PubMed  Google Scholar 

  • Endres MJ, Clapham PR, Marsh M, Ahuja M, Davis-Turner J, Mcknight A, Thomas JF, Stoebenau-Haggarty B, Choe S, Vance PJ, Wells TNC, Power CA, Sutterwala SS, Doms RW, Landau NR, Hoxie JA (1996). CD4-independent infection by HIV-2 is mediated by Fusin/CXCR4. Cell 87: 745–756.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE, Berger EA (1996). HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 872–877.

    Article  CAS  PubMed  Google Scholar 

  • Genis P, Jett M, Berton EW (1992). Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions for the neuropathogenesis of HIV disease. J Exp Med 176: 1703–1718.

    Article  CAS  PubMed  Google Scholar 

  • Gorry P, Purcell D, Howard J, McPhee D (1998). Restricted HIV-1 infection of human astrocytes: Potential role of nef in the regulation of virus replication. J NeuroVirol 4: 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Gruol DL, Yu N, Parsons KL, Billaud JN, Elder JH, Phillips TR (1998). Neurotoxic effects of feline immunodeficiency virus, FIV-PPR. J NeuroVirol 4: 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Gyorkey F, Melnick J, Gyorkey P (1987). Human immunodeficiency virus in brain biopsies with AIDS and progressive encephalopathy. J Infect Dis 155: 870–876.

    CAS  PubMed  Google Scholar 

  • Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, Kolson DL, Horuk R (1998). Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1α is mediated by the chemokine receptor CXCR4. Curr Biol 8: 595–598.

    Article  CAS  PubMed  Google Scholar 

  • Hosie MJ, Broere N, Hesselgesser J, Turner JD, Hoxie JA, Neil JC, Willett BJ (1998). Modulation of feline immunodeficiency virus infection by stromal cell-derived factor. J Virol 72: 2097–2104.

    CAS  PubMed  Google Scholar 

  • Hosie MJ, Willett BJ, Dunsford TH, Jarrett O, Neil JC (1993). A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor. J Virol 67: 1667–1671.

    CAS  PubMed  Google Scholar 

  • Hurtrel M, Ganiere JP, Guelfi JF, Chakrabarti L, Maire MA, Gray F, Montagnier L, Hurtrel B (1992). Comparison of early and late feline immunodeficiency virus encephalopathies. AIDS 6: 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Janabi N, Di Stefano M, Wallon C, Hery C, Chiodi F, Tardieu M (1998). Induction of human immunodeficiency virus type-1 replication in human glial cells after proinflammatory cytokines stimulation: Effect of IFNγ, IL1β, and TNFα on differentiation and chemokine production in glial cells. Glia 23: 304–315.

    Article  CAS  PubMed  Google Scholar 

  • Jordan CA, Watkin BA, Kufta C, Dubois-Dalcq M (1991). Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J Virol 65: 736–742.

    CAS  PubMed  Google Scholar 

  • Kerr SJ, Armati PJ, Guillemin GJ, Brew BJ (1998). Chronic exposure of human neurons to quinolic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 12: 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Klein RS, Williams KC, Alvarez-Hernandez X, Westmoreland S, Force T, Lackner AA, Luster AD (1999). Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes implications for the neuropathogenesis of AIDS. J Immunol 163: 1636–1646.

    CAS  PubMed  Google Scholar 

  • Lavi E, Strizki JM, Ulrich AM, Zhang W, Fu L, Wang Q, O’Connor M, Hoxie JA, Gonzalez-Scarano F (1997). CXCR-4 (Fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am J Pathol 151: 1035–1042.

    CAS  PubMed  Google Scholar 

  • Lipton SA, Gendelman HE (1995). Dementia associated with the acquired immunodeficiency syndrome. N Eng J Med 332: 934–940.

    Article  CAS  Google Scholar 

  • Lu ZH, Berson JF, Chen YH, Turner JD, Zhang TY, Sharron M, Jenks MH, Wang ZX, Kim J, Rucker J, Hoxie JA, Peiper SC, Doms RW (1997). Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proc Natl Acad Sci USA 94: 6426–6431.

    Article  CAS  PubMed  Google Scholar 

  • MacKay CR (1996). Chemokine receptors and T-cell chemotaxis. J Exp Med 184: 799–802.

    Article  CAS  PubMed  Google Scholar 

  • Nottet H, Jett M, Flanagan CR, Zhai Q-H, Persidsky Y, Rizzino A, Bernton EW, Genis P, Baldwin T, Schwartz J, LaBenz CJ, Gendelman HE (1995). A regulatory role for astrocytes in HIV-1 enceohalitis: An overexpression of eicosanoids, platelet-activated factor, and tumor necrosis factor-a by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol 154: 3567–3581.

    CAS  PubMed  Google Scholar 

  • Ohagen A, Ghosh S, He J, Huang K, Chen Y, Yuan M, Osathanondh R, Gartner S, Shi B, Shaw G, Gabuzda D (1999). Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: Evidence for a role of the envelope. J Virol 73: 897–906.

    CAS  PubMed  Google Scholar 

  • Ohtani Y, Minami M, Kawaguchi N, Nishiyori A, Yamamoto J, Takami S, Satoh M (1998). Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cells. Neurosci Lett 249: 163–166.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen NC, Ho EH, Brown ML, Yamamoto JK (1987). Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235: 790–793.

    Article  CAS  PubMed  Google Scholar 

  • Petito CK, Roberts B (1995). Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146: 1121–1130.

    CAS  PubMed  Google Scholar 

  • Phillips TR, Prospero-Garcia O, Puaoi DL, Lerner DL, Fox HS, Olmsted RA, Bloom FE, Henriksen SJ, Elder JH (1994). Neurological abnormalities associated with feline immunodeficiency virus infection. J Gen Virol 75: 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Power C, Moench T, Peeling J, Kong PA, Langelier T (1997). Feline immunodeficiency virus causes increased glutamate levels and neuronal loss in brain. Neuroscience 77: 1175–1185.

    Article  CAS  PubMed  Google Scholar 

  • Prospero-Garcia O, Herold N, Phillips TR, Elder JH, Bloom FE, Henriksen SJ (1994). Sleep patterns are disturbed in cats infected with feline immunodeficiency virus. Proc Natl Acad Sci USA 91: 12947–12951.

    Article  CAS  PubMed  Google Scholar 

  • Richardson J, Pancino G, Merat R, Leste-Lasserre T, Moraillon A, Schneider-Mergener J, Alizon M, Sonigo P, Heveker N (1999). Shared usage of the chemokine receptor CXCR4 by primary and laboratory-adapted strain of feline immunodeficiency virus. J Virol 73: 3661–3671.

    CAS  PubMed  Google Scholar 

  • Schols D, Este JA, Cabrera C, De Clercq E (1998). T-cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1 contains mutations in the envelope gp120 but does not show a swich in coreceptor use. J Virol 72: 4032–4037.

    CAS  PubMed  Google Scholar 

  • Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E (1997). Inhibition of T-tropic HIV Strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 186: 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  • Shi B, De Girolami U, He J, Wang S, Lorenzo A, Busciglio J, Gabuzda D (1996). Apoptosis induced by HIV-1 infection of the central nervous system. J Clin Investig 98: 1979–1990.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe S, Heesen M, Yoshizawa I, Berman MA, Luo Y, Bleul CC, Springer TA, Okuda K, Gerard N, Dorf ME (1997). Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J Immunol 159: 905–911.

    CAS  PubMed  Google Scholar 

  • Tornatore C, Nath A, Amemiya K, Major EO (1991). Persistent human immunodeficiency virus type-1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor alpha and interleukin-1 beta. J Virol 65: 6094–6100.

    CAS  PubMed  Google Scholar 

  • Watkins BA, Dorn HH, Kelly WB, Armstrong RC, Potts B, Michaels F, Kufta CV, Dubois-Dalcq M (1990). Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249: 549–553.

    Article  CAS  PubMed  Google Scholar 

  • Wiley CA, Schrier R, Nelson J, Lampert PW, Oldstone M (1986). Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 83: 7089–7093.

    Article  CAS  PubMed  Google Scholar 

  • Willett BJ, Adema K, Heveker N, Brelot A, Picard L, Alizon M, Turner JD, Hoxie JA, Peiper S, Neil JC, Hosie M (1998). The second extracellular loop of CXCR4 determines its function as a receptor for feline immunodeficiency virus. J Virol 72: 6475–6481.

    CAS  PubMed  Google Scholar 

  • Willett BJ, Picard L, Hosie MJ, Turner JD, Adema K, Clapham PR (1997). Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J Virol 71: 6407–6415.

    CAS  PubMed  Google Scholar 

  • Yamamoto JK, Sparger E, Ho EW, Andersen PR, O’Connor TP, Mandell CP, Lowenstine L, Munn R, Pedersen NC (1988). Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am J Vet Res 48: 1246–1258.

    Google Scholar 

  • Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che M, Zeng Y-C, Gelbard HA, Shepard RB, Swartz JM, Gendelman HE (1999). Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HTV-1-associated dementia. J Neuroimmunol 98: 185–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Tabira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagaki, K., Nakagaki, K., Takahashi, K. et al. CXCR4 is the primary receptor for feline immunodeficiency virus in astrocytes. Journal of NeuroVirology 7, 487–492 (2001). https://doi.org/10.1080/135502801753170354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/135502801753170354

Keywords

Navigation