Skip to main content
Log in

Sivb 2003 Congress Symposium Proceeding: Mutation- and Transposon-Based Approaches for the Identification of Genes for Pre-Harvest Sprouting in Wheat

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

This article reviews techniques for gene identification and cloning in allohexaploid bread wheat (Triticum aestivum L.). Gene identification and cloning in wheat are complicated by the large size and high redundancy of the genome. Both classical mutagenesis and transposon tagging are important tools for the study of grain dormancy and plant hormone signaling in wheat. While classical mutagenesis can be used to identify wheat mutants with altered hormone sensitivity, it can be difficult to clone the corresponding genes. We review the techniques available for gene identification in wheat, and propose that transposon-based activation tagging will be an important tool for wheat genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, R. E. Agronomic comparisons among wheat lines nearly isogenic for three reduced-height genes. Crop Sci. 26:707–710; 1986.

    Article  Google Scholar 

  • Anderberg, R. J.; Walker-Simmons, M. K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc. Natl Acad. Sci. USA 89:10183–10187; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M.; Mulligan, B. Arabidopsis mutant collection. In: Koncz, C.; Chua, N.-H.; Schell, J., eds. Methods in Arabidopsis research. River Edge, NJ; World Scientific Publishing; 1992:419–437

    Google Scholar 

  • Arumuganathan, K.; Earle, E. D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208–219; 1991.

    CAS  Google Scholar 

  • Bennetzen, J. L. The Mutator transposable element system in maize. In: Saedler, H.; Gierl, A., eds. Transposable elements. Berlin and Heidelberg: Springer-Verlag; 1996:195–229.

    Google Scholar 

  • Boyd, L. A.; Smith, P. H.; Wilson, A. H.; Minchin, P. N. Mutations in wheat showing altered field resistance to yellow and brown rust. Genome 45:1035–1040; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Enoki, H.; Izawa, T.; Kaahara, M.; Komatsu, M.; Koh, S.; Kyozuka, J.; Shimamoto, K. Ac as a tool for the functional genomics of rice. Plant J. 19:605–613; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff, N.; Furtek, V.; Smith, D. L. Cloning of the Bronze locus in maize by a simple and generalizable procedure using the transposable element Ac. Proc. Natl Acad. Sci. USA 81:3825–3829; 1984.

    Article  CAS  Google Scholar 

  • Feldmann, K. A. T-DNA insertion mutagenesis in Arabidopsis-mutational spectrum Plant J. 71–82; 1991.

  • Finkelstein, R. R.; Rock, C. D. Abscisic acid biosynthesis and response. In: The Arabidopsis book. Rockville, MD: American Society of Plant Physiologists; 2002.

    Google Scholar 

  • Friebe, B.; Jiang, J.; Knott, D. R.; Gill, B. S. Compensation indices of radiationinduced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 34:400–404; 1994.

    Article  Google Scholar 

  • Galili, S.; Avivi, Y.; Millet, E.; Feldman, M. RFLP-based analysis of three RbcS subfamilies in diploid and polyploid species of wheat. Mol. Gen. Genet. 263:674–680; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Giroux, M. J.; Morris, C. F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. theor. Appl. Genet. 95:857–864; 1997.

    Article  CAS  Google Scholar 

  • Giroux, M. J.; Morris C. F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl Acad. Sci. USA 95:6262–6266; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Groos, C.; Gay, G.; Perretant, M.-R.; Gervais, L.; Bernard, M.; Dedryver, F.; Charmet, G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. Theor. Appl. Genet. 104:39–47; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H.; Czaja, I.; Lubenow, H.; Schell, J.; Walden, R. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258:1350–1353; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Heslot, H. The nature of mutations. In: The use of induced mutations in plant breeding. Oxford and New York: Pergamon Press; 1965:3–45.

    Google Scholar 

  • Jiang, J.; Gill, B. S. New 18S.26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103:179–185; 1994.

    PubMed  CAS  Google Scholar 

  • Kawakami, N.; Miyake, Y.; Noda, K. ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. J. Exp. Bot. 48:1415–1421; 1997.

    Article  CAS  Google Scholar 

  • Kerber, E. R. Stem-rust resistance in ‘Canthatch’ hexaploid wheat induced by a nonsuppressor mutation on chromosome 7DL. Genome 34:935–939; 1991.

    Google Scholar 

  • Kerber, E. R.; Aung, T. Confirmation of nonsuppressor mutation of stem rust resistance in ‘Canthatch’ common wheat. Crop Sci. 35:743–744; 1995.

    Article  Google Scholar 

  • Kinane, J. T.; Jones, P. W. Isolation of wheat mutants with increased resistance to powdery mildew from small induced variant populations. Euphytica 117:251–260; 2001.

    Article  Google Scholar 

  • Koncz, C.; Schell, J.; Rédei, G. P. T-DNA transformation and insertion mutagenesis. In: Koncz, C. Chua, N.-H.; Schell, J., eds. Methods in Arabidopsis research. River Edge, NJ: World Scientific Publishing; 1992:224–273.

    Google Scholar 

  • Konzak, C. F. Mutations and mutation breeding. In: Heyne, E. G., ed. Wheat and wheat improvement, 2nd edn. Madison, WI: American Society o Agronomy; 1987:428–443.

    Google Scholar 

  • Koprek, T.; McElroy, D.; Louwerse, J.; Williams-Carrier, R.; Lemaux, P. G. Technical advance: an efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J. 24:253–263; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, W. R.; Godwin, I. D.; Cooper, M.; Brennan, P. S. Genetic analysis of preharvest sprouting tolerance in three wheat crosses. Euphytica 95:321–323; 1997.

    Article  Google Scholar 

  • Long, D.; Goodrich, J.; Wilson, K.; Sundberg, E.; Martin, M.; Puangsomlee, P.; Coupland, G. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 11:145–148; 1997.

    Article  PubMed  CAS  Google Scholar 

  • McKelvie, A. D. A list of mutant genes in Arabidopsis thaliana (L). Heynh. Radiat. Bot. 1:233–241; 1962.

    Article  Google Scholar 

  • McLysaght, A.; Enright, A. J.; Skrabanek, L.; Wolfe, K. H. Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 17:22–36; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, B. I.; Baker, B. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr. Opin. Cell Biol. 7:406–413; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Parinov, S.; Sevugan, M.; De, Y.; Yang, W. C.; Kumaran, M.; Sundaresan, V. Analysis of flanking sequences from dissociation insertion lines. A database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J.; Richards, D. E.; Hartley, N. M.; Murphy, G. P.; Devos, K. M.; Flintham, J. E.; Beales, J.; Fish, L. J.; Worland, A. J.; Pelica, F.; Sudhakar, D.; Christou, P.; Snape, J. W.; Gale, M. D.; Harberd, N. P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rédei, G. P. Arabidopsis thaliana: a review of the genetics and biology. Bibliogr. Genet. 20:1–151; 1970.

    Google Scholar 

  • Rédei, G. P.; Koncz, C. Classical mutagenesis. In: Koncz, C.; Chua, N.-H.; Schell, J., eds. Methods in Arabidopsis research. River Edge, NJ: World Scientific Publishing; 1992:16–82.

    Google Scholar 

  • Roy, J. K.; Prasad, M.; Varshney, R. K.; Balyan, H. S.; Blake, T. K.; Dhaliwal, H. S.; Singh, H.; Edwards, K. J.; Gupta, P. K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor. Appl. Genet. 99:336–340; 1999.

    Article  Google Scholar 

  • Schell J. S. Transgenic plants as tools to study the molecular organization of plant genes. Science 237:1176–1183; 1987.

    Article  Google Scholar 

  • Wahl, T. I.; O'Rourke, A. D. The economics of spfout damage in wheat. In: Walker-Simmons, M. K.; Ried, J. L., eds. Pre-harvest sprouting in cereals. St. Paul, MN: American Association of Cereal Chemists; 1993:10–17.

    Google Scholar 

  • Walker-Simmons, M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 84:61–66; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D.; Ahn, J. H.; Blazquez, M. A.; Borevitz, J. O.; Christensen, S. K.; Fankhauser, C.; Ferrandiz, C.; Kardailsky, I.; Malancharuvil, E. J.; Neff, M. M.; Nguyen, J. T.; Sato, S.; Wang, Z. Y.; Xia, Y.; Dixon, R. A.; Harrison, M. J.; Lamb, C. J.; Yanofsky, M. F.; Chory, J. Activation tagging in Arabidopsis. Plant Physiol. 122:1003–1013; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Weil, C. F.; Kunze, R. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat. Genet. 26:187–190; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Williams, N. D.; Miller, J. D.; Klindworth, D. L. Induced mutations of a genetic suppressor of resistance of wheat stem rust. Crop Sci. 32:612–616; 1992.

    Article  Google Scholar 

  • Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional cloning of the wheat vernalization gene VRNI. Proc. Natl Acad. Sci. USA 100:6263–6268; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Zale, J. M.; Steber, C. M. Transposon-related sequences in the Triticeae. Cereal Res. Commun. 30:237–244; 2002.

    CAS  Google Scholar 

  • Zanetti, S.; Winzeler, M.; Keller, M.; Keller, B.; Messmer, M. Genetic analysis of pre-harvest sprouting resistance in a wheat × spelt cross. Crop Sci. 40:1405–1417; 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille M. Steber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strader, L.C., Zale, J.M. & Steber, C.M. Sivb 2003 Congress Symposium Proceeding: Mutation- and Transposon-Based Approaches for the Identification of Genes for Pre-Harvest Sprouting in Wheat. In Vitro Cell.Dev.Biol.-Plant 40, 256–259 (2004). https://doi.org/10.1079/IVP2003525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003525

Key words

Navigation