Skip to main content
Log in

Recent advances in wheat transformation

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Since the first report of wheat transformation in the early 1990s, genetic engineering of wheat has evolved rapidly. Several laboratories worldwide have reported the production of fertile transgenic wheat plants using a variety of methods. While there are several innovative and promising approaches for wheat transformation using different explants as targets for transformation, different methods of transformation, and different selection schemes, the most common approach to wheat transformation is the bombardment of tissue derived from immature embryos followed by selection based on resistance to the bar gene. Even with all these successful reports, hurdles still exist for this recalcitrant crop. Of these hurdles, low transformation rates, tools for transgene expression, and transgene silencing in subsequent generations are probably the most critical. This review will provide an overview of wheat transformation in the past decade, addressing both positive and negative factors that effect transformation while highlighting the successes of the past and prospects for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, K. Z.; Sagi, F. Culture of and fertile plant regeneration from regenerable embryogenic suspension cell-derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Rep. 12:175–179; 1993.

    Google Scholar 

  • Allen, G.; Spiker, S.; Thomson, W. The use of matrix attachment regions MARs to minimize transgene silencing. Plant Mol. Biol. 43:361–376; 2000.

    PubMed  CAS  Google Scholar 

  • Altpeter, F.; Diaz, I.; McAuslane, H.; Gaddour, K.; Carbonero, P.; Vasil, I. K. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol. Breeding 5:53–63; 1999.

    CAS  Google Scholar 

  • Altpeter, F.; Vasil, V.; Srivastava, V.; Stöger, E.; Vasil, I. K. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 16:12–17; 1996.

    CAS  Google Scholar 

  • Alvarez, M. L.; Guelman, S.; Halford, N. G.; Lustig, S.; Reggiardo, M. I.; Ryabushkina, N.; Shewry, P.; Stein, J.; Vallejos, R. H. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor. Appl. Genet. 100:319–327; 2000.

    CAS  Google Scholar 

  • Anderson, O. D.; Greene, F. C.; Yip, R. E.; Halford, N. G.; Shewry, P. R.; Malpica-Romero, J. M. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyenne. Nucleic Acids Res. 17:461–462; 1989.

    PubMed  CAS  Google Scholar 

  • Aryan, A. P.; An, G.; Okita, T. W. Structural and functional analysis of promoter from gliadin, an endosperm-specific storage protein gene of Triticum aestivum L. Mol. Gen. Genet. 225:65–71; 1991.

    PubMed  CAS  Google Scholar 

  • Barro, F.; Cannell, M. E.; Lazzeri, P. A.; Barcelo, P. The influence of auxin on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theor. Appl. Genet. 97:684–695; 1998.

    CAS  Google Scholar 

  • Barro, F.; Rooke, L.; Békés, F.; Gras, P.; Tatham, A. S.; Fido, R.; Lazzeri, P. A.; Shewry, P. R.; Barceló, P. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature Bio/Technol. 15:1295–1299; 1997.

    CAS  Google Scholar 

  • Barry, G.; Kishore, G. M.; Padgette, S. R.; Taylor, M.; Kolacz, K.; Weldon, M.; Re, D.; Eichholtz, D.; Fincher, K.; Hallas, L. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Curr. Topics Plant Physiol. 7:139–145; 1992.

    Google Scholar 

  • Becker, D.; Brettschneider, R.; Lörz, H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5:299–307; 1994.

    PubMed  CAS  Google Scholar 

  • Blechl, A. E.; Anderson, O. D. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nature Bio/Technol. 14:875–879; 1996.

    CAS  Google Scholar 

  • Bliffeld, M.; Mundy, J.; Potrykus, I.; Fütterer, J. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98:1079–1086; 1999.

    CAS  Google Scholar 

  • Block, R. Transgenic plastids in basic research and plant biotechnology. J. Mol. Biol. 312:425–438; 2001.

    Google Scholar 

  • Bowden, R. L., Appel, J. A., Eversmeyer, M., Bockus, W. W. Kansas wheat disease loss estimates. http://www.oznet.ksu.edu/wheatpage/Links/Wheat %20Loss.htm; 2001.

  • Brisibe, E. A.; Gajdosova, A.; Olesen, A.; Andersen, S. B. Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat. J. Exp. Bot. 51:187–196; 2000.

    PubMed  CAS  Google Scholar 

  • Brisibe, E. A.; Olesen, A.; Anderson, O. D. Characterization of anther culture-derived cell suspension exclusively regenerating green plantlets in wheat (Triticum aestivum). Euphytica 93:321–329; 1997.

    Google Scholar 

  • Campbell, B. T.; Baenziger, P. S.; Mitra, A.; Sato, S.; Clemente, T. Inheritance of multiple transgenes in wheat. Crop Sci. 40:1133–1141; 2000.

    Article  CAS  Google Scholar 

  • Chen, L.; Zhang, S.; Beachy, R. N.; Fauquet, C. M. A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Rep. 18:25–31; 1998a.

    Google Scholar 

  • Chen, W. P.; Chen, P. D.; Liu, D. J.; Kynast, R.; Friebe, B.; Velazhahan, R.; Muthukrishnan, S.; Gill, B. S. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet. 99:755–760; 1999.

    CAS  Google Scholar 

  • Chen, W. P.; Gu, X.; Liang, G. H.; Muthukrishnan, S.; Chen, P. D.; Liu, D. J.; Gill, B. S. Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theor. Appl. Genet. 97:1296–1306; 1998b.

    CAS  Google Scholar 

  • Cheng, M.; Fry, J. E.; Pang, S.; Zhou, H.; Hironaka, C. M.; Duncan, D. R.; Conner, T. W.; Wan, Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115:971–980; 1997.

    PubMed  CAS  Google Scholar 

  • Chibbar, R. N.; Kartha, K. K.; Leung, N.; Qureshi, J.; Caswell, K. Transient expression of marker genes in immature zygotic embryos in spring wheat (Triticum aestivum) through microprojectile bombardment. Genome 34:453–460; 1991.

    CAS  Google Scholar 

  • Clausen, M.; Kräuter, R.; Schachermayr, G.; Potrykus, I.; Sautter, C. Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotechnol. 18:446–449; 2000.

    CAS  Google Scholar 

  • Clough, S. J.; Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743; 1998.

    PubMed  CAS  Google Scholar 

  • Collinge, D. B.; Kragh, K. M.; Mikkelsen, J. D.; Nielsen, K. K.; Rasmussen, U.; Vad, K. Plant chitinases. Plant J. 3:31–40; 2001.

    Google Scholar 

  • Datta, S. K.; Muthukrishnan, S. Pathogenesis-related proteins in plants. Boca Raton, FL: CRC Press; 1999.

    Google Scholar 

  • De Block, M.; Botterman, J.; Vandewiele, M.; Dockx, J.; Thoen, C.; Movva, N. R.; Thompson, C.; Van Montagu, M.; Leemans, J. Engineering herbicide resistance in plants by expression of a detoxyfying enzyme. EMBO J. 6(9):2513–2518; 1987.

    PubMed  CAS  Google Scholar 

  • De Block, M.; Debrouwer, D.; Moens, T. The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor. Appl. Genet. 95:125–131; 1997.

    Google Scholar 

  • Dekeyser, R.; Claes, B.; Marichal, M.; Van Montagu, M.; Caplan, A. Evaluation of selectable markers for rice transformation. Plant Physiol. 90:217–223; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Digeon, J.-F.; Guiderdoni, E.; Alary, R.; Michaux-Ferrière, N.; Joudrier, P.; Gautier, M.-F. Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol. Biol. 39:1101–1112; 1999.

    PubMed  CAS  Google Scholar 

  • Fagard, M.; Vaucheret, H. (Trans)Gene silencing in plants: how many mechanisms? Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:167–194; 2000.

    PubMed  CAS  Google Scholar 

  • FAO. FAOSTAT agricultural database. Food and Agriculture Organization of the United Nations (FAO) http://www.fao.org/; 2001.

  • Fellers, J. P.; Guenzi, A. C.; Taliaferro, C. M.: Factors affecting the establishment and maintenace of embryogenic callus and suspension cultures of wheat (Triticum aestivum L.). Plant Cell Rep. 15:232–237; 1995.

    CAS  Google Scholar 

  • Fennell, S.; Bohorova, N.; van Ginkel, M.; Crossa, J.; Hoisington, D. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theor. Appl. Genet. 92:163–169; 1996.

    Google Scholar 

  • Flavell, R. B.; Dart, E.; Fuchs, R. L.; Fraley, R. T. Selectable marker genes: safe for plants. Bio/Technology 10:141–144; 1992.

    PubMed  CAS  Google Scholar 

  • Goff, S. A.; Klein, T. M.; Roth, B. A.; Fromm, M. E.; Cone, K. C.; Radicella, J. P.; Chandler, V. L. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9:2517–2522; 1990.

    PubMed  CAS  Google Scholar 

  • Graves, A. C. F.; Goldman, S. L. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Detection of T-DNA specific enzyme activities. Plant Mol. Biol. 7:43–50; 1986.

    CAS  Google Scholar 

  • Hansen, G.; Das, A.; Chilton, M.-D. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl Acad. Sci. USA 91:7603–7607; 1994.

    PubMed  CAS  Google Scholar 

  • Hansen, G.; Wright, M. S. Recent advances in the transformation of plants. Trends Plant Sci. 4:226–231; 1999.

    PubMed  Google Scholar 

  • Haseloff, J.; Siemering, K. R. The uses of GFP in plants. In: Chalfie, M.; Kain, S., eds. Green fluorescent protein: properties, applications, and protocols. New York: Wiley-Liss; 1998:191–220.

    Google Scholar 

  • He, D. G.; Mouradov, A.; Yang, Y. M.; Mouradova, E.; Scott, K. J. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep. 14:192–196; 1994.

    CAS  Google Scholar 

  • He, D. G.; Yang, Y. M.; Dahler, G.; Scott, K. J. A comparison of epiblast callus and scutellum callus induction in wheat. The effect of embryo age, genotype and medium. Plant Sci. 57:225–233; 1988.

    Google Scholar 

  • He, G. Y.; Lazzeri, P. A.; Cannell, M. E. Fertile transgenic plants obtained from tritordeum inflorescences by tissue electroporation. Plant Cell Rep. 20:67–72; 2001.

    CAS  Google Scholar 

  • Hess, D. Genetic transformation of wheat via pollen 25 years of plant transformation attempts II. In: Jain, S. M.; Sopory, S. K.; Veilleux, R. E., eds. In vitro haploid production in higher plants, vol. 2. Dordrecht: Kluwer Academic Publishers; 1996:393–409.

    Google Scholar 

  • Hess, D.; Dressler, K.; Nimmrichter, R. Transformation experiments by pipetting Agrobacterium into the spkelets of wheat (Triticum aestivum L.). Plant Sci. 72:233–244; 1990.

    CAS  Google Scholar 

  • Hess, J.; Carman, J. Competence of immature wheat embryos: genotype, donor plant environment and endogenous hormone levels. Crop Sci. 38:249–253; 1998.

    Article  CAS  Google Scholar 

  • Hiei, Y.; Komari, T.; Kubo, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35:205–218; 1997.

    PubMed  CAS  Google Scholar 

  • Iglesias, V. A.; Gisel, A.; Potrykus, I.; Sautter, C. In vitro germination of wheat proembryos to fertile plants. Plant Cell Rep. 13:377–380; 1994.

    CAS  Google Scholar 

  • Iser, M.; Fettig, S.; Scheyhing, F.; Viertel, K.; Hess, D. Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. J. Plant Physiol. 154:509–516; 1999.

    CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Jordan, M. C. Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep. 19:1069–1075; 2000.

    CAS  Google Scholar 

  • Kaeppler, H. F.; Menon, G. K.; Skadsen, R. W.; Nuutila, A. M.; Carlson, A. R. Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Rep. 19:661–666; 2000.

    CAS  Google Scholar 

  • Kartha, K. K.; Chibbar, R. N.; Georges, G.; Leung, N.; Caswell, K.; Kendall, E. J.; Qureshi, J. A. Transient expression of chloramphenicol acetyltransferase (CAT) gene in barley cell cultures and immature embryos through microprojectile bombardment. Plant Cell Rep. 8:429–432; 1989.

    CAS  Google Scholar 

  • Kishore, G. M.; Padgette, S. R.; Fraley, R. T. History of herbicide-tolerant crops, methods of development and current state of the art—emphasis on glyphosate tolerance. Weed Technol. J. Weed Sci. Soc. Am. 6:626–634; 1992.

    CAS  Google Scholar 

  • Klöti, A.; Iglesias, V. A.; Wünn, J.; Burkhardt, P. K.; Datta, S. K.; Potrykus, I. Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep. 12:671–675; 1993.

    Google Scholar 

  • Kurek, I.; Harvey, A. J.; Lonsdale, D. M.; Breiman, A. Isolation and characterization of the wheat prolyl isomerase FK506-binding protein (FKBP) 73 promoter. Plant Mol. Biol. 42:489–497; 2001.

    Google Scholar 

  • Lashminarayan, I. M.; Kumpatla, S. P.; Chandrasekharan, M. B.; Hall, T. C. Transgene silencing in monocots. Plant Mol. Biol. 43:323–346; 2000.

    Google Scholar 

  • Lamacchia, C.; Shewry, P. R.; Di Fonzo, N.; Forsyth, J. L.; Harris, N.; Lazzeri, P. A.; Napier, J. A.; Halford, N. G.; Barcelo, P. Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J. Exp. Bot. 52:243–250; 2001.

    PubMed  CAS  Google Scholar 

  • Last, D. I.; Brettell, R. I. S.; Chamberlain, D. A.; Chaudhury, A. M.; Larkin, P. J.; Marsh, E. L.; Peacock, W. J.; Dennis, E. S. pEmu: an improved promoter for gene expression in cereal cells. Theor. Appl. Genet. 81:581–588; 1991.

    CAS  Google Scholar 

  • Leckband, G.; Lörz, H. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96:1004–1012; 1998.

    CAS  Google Scholar 

  • Lonsdale, D. M.; Moisan, L. J.; Harvey, A. J. The effect of altered codon usage on luciferase activity in tobacco, maize and wheat. Plant Cell Rep. 17:396–399; 1998.

    CAS  Google Scholar 

  • Marsan, P. L.; Lupotto, E.; Locatelli, F.; Quiao, Y. M.; Cattaneo, M. Analysis of stable events of transformation on wheat via PEG-mediated DNA uptake into protoplasts. Plant Sci. 93:85–94; 1993.

    CAS  Google Scholar 

  • McCormac, A. C.; Wu, H.; Bao, M.; Wang, Y.; Xu, R.; Elliott, M. C.; Chen, D. F. The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica 99:17–25; 1998.

    CAS  Google Scholar 

  • McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: a reemerging disease of devastating impact. Plant Dis. 81:1340–1348; 1997.

    Google Scholar 

  • Meijer, E. G. M.; Schilperoort, R. A.; Rueb, S.; van Os-Ruygrok, P. E.; Hensgens, L. A. M. Transgenic rice cell lines and plants: expression of transferred chimeric genes. Plant Mol. Biol. 16:807–820; 1991.

    PubMed  CAS  Google Scholar 

  • Menczel, L.; Galiba, G.; Nagy, F.; Maliga, P. Effect of radiation dosage on efficiency of chloroplast transfer by protoplast fusion in Nicotiana. Genetics 100:487–495; 1982.

    PubMed  CAS  Google Scholar 

  • Mentewab, A.; Letellier, V.; Marque, C.; Sarrafi, A. Use of anthocyanin biosynthesis stimulatory genes as markers for the genetic transformation of haploid embryos and isolated microspores in wheat. Cereal Res. Commun. 27:17–24; 1999.

    CAS  Google Scholar 

  • Miles, J. S.; Guest, J. R. Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48; 1984.

    PubMed  CAS  Google Scholar 

  • Mohanty, A.; Sarma, N. P.; Tyagi, A. K. Agrobacterium-mediated high frequency transformation of an elite indica rice variety Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Sci. 147:127–137; 1999.

    CAS  Google Scholar 

  • Mooney, P. A.; Goodwin, P. B.; Dennis, E. S.; Lewellys, D. J. Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Tiss. Cult. Organ Cult. 25:209–218; 1991.

    CAS  Google Scholar 

  • Murry, L.; Elliott, L.; Capitant, S.; West, J.; Hanson, K.; Scarafia, L.; Johnston, S.; Deluca-Flaherty, C.; Nichols, S.; Cunanan, D.; Dietrich, P.; Mettler, I. J.; Dewald, S.; Warnick, D.; Rhodes, C.; Sinibaldi, R.; Brunke, K. Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infection of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11:1559–1564; 1993.

    PubMed  CAS  Google Scholar 

  • Muthukrishnan, S.; Liang, G. H.; Trick, H. N.; Gill, B. S. Pathogenesis-related proteins and their genes in cereals. Plant Cell Tiss. Organ Cult. 64:1–23; 2001.

    Google Scholar 

  • Nehra, N. S.; Chibbar, R. N.; Leung, N.; Caswell, K.; Mallard, C.; Steinhauer, L.; Baga, M.; Kartha, K. K. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5:285–297; 1994.

    CAS  Google Scholar 

  • Nishizawa, Y.; Nishio, Z.; Nakazono, K.; Soma, M.; Nakajima, E.; Ugaki, M.; Hibi, T.: Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor. Appl. Genet. 99:383–390; 1999.

    CAS  Google Scholar 

  • Ortiz, J. P. A.; Reggiardo, M. I.; Ravizzini, R. A.; Altabe, S. G.; Cervigni, G.D.L.; Spitteler, M. A.; Morata, M. M.; Elias, F. E.; Vallejos, R. H. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep. 15:877–881; 1996.

    CAS  Google Scholar 

  • Park, S. H.; Rose, S. C.; Zapata, C.; Srivatanakul, M.; Smith, R. H. Cross-protection and selectable marker genes in plant transformation. In Vitro Cell. Dev. Biol. Plant 34:117–121: 1998.

    CAS  Google Scholar 

  • Pastori, G. M.; Wilkinson, M. D.; Steele, S. H.; Sparks, C. A.; Jones, H. D.; Parry, M. A. J. Age-dependent transformation frequency in elite wheat varieties. J. Exp. Bot. 52:857–863; 2001.

    PubMed  CAS  Google Scholar 

  • Pellegrineschi, A.; McLean, S.; Salgado, M.; Velazquez, L.; Hernandez, R.; Brito, R. M.; Noguera, M.; Medhurst, A.; Hoisington, D. Transgenic wheat plants: a powerful breeding source. Euphytica 119:133–136; 2001.

    CAS  Google Scholar 

  • Peters, N. R.; Ackerman, S.; Davis, E. A. A modular vector for Agrobacterium mediated transformation of wheat. Plant Mol. Biol. Reporter 17:323–331; 1999.

    CAS  Google Scholar 

  • Pickett, A. A. Hybrid wheat: results and problems. Berlin, Hamburg: Paul Parey Scientific; 1993.

    Google Scholar 

  • Pingali, P. L.; Rajaram, S. Global wheat research in a changing world: options for sustaining growth in wheat productivity. CIMMYT world wheat facts and trends. DF, Mexico; 1999: 1–18.

  • Rampitsch, C.; Jordan, M. C.; Cloutier, S. A matrix attachment region is located upstream from the high-molecular-weight glutenin gene Bx7 in wheat (Triticum aestivum L.). Genome 43:483–486; 2000.

    PubMed  CAS  Google Scholar 

  • Rasco-Gaunt, S.; Riley, A.; Barcelo, P.; Lazzeri, P.A. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissue. Plant Cell Rep. 19: 118–127; 1999.

    CAS  Google Scholar 

  • Rasco-Gaunt, S.; Riley, A.; Cannell, M.; Barcelo, P.; Lazzeri, P.A. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J. Exp. Bot. 52:865–874; 2001.

    PubMed  CAS  Google Scholar 

  • Sears, R. G.; Deckard, E. L. Tissue culture variability in wheat: callus induction and plant regeneration. Crop Sci. 22:546–550; 1982.

    Article  Google Scholar 

  • Shewry, P. R.; Halford, N. G.; Tatham, A. S. The high molecular weight subunits of wheat glutenin. J. Cereal Sci. 15:105–120; 2001.

    Article  Google Scholar 

  • Sivamani, E.; Bahieldin, A.; Wraith, J. M.; Al-Niemi, T.; Dyer, W. E.; Ho, T. H. D.; Qu, R.: Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155:1–9; 2000.

    PubMed  CAS  Google Scholar 

  • Sorokin, A. P.; Ke, X.; Chen, D.-F.; Elliott, M. C. Production of fertile transgenic wheat plants via tissue electroporation. Plant Sci. 156:227–233; 2000.

    PubMed  CAS  Google Scholar 

  • Srivastava, V.; Anderson, O. D.; Ow, D. W. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl Acad. Sci. USA 96:1117–11121; 1999.

    Google Scholar 

  • Stöger, E.; Vaquero, C.; Torres, E.; Sack, M.; Nicholson, L.; Drossard, J.; Williams, S.; Keen, D.; Perrin, Y.; Christou, P. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42:583–590; 2000.

    PubMed  Google Scholar 

  • Stöger, E.; Williams, S.; Christou, P.; Down, R. E.; Gatehouse, J. A. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol. Breeding 5:65–73; 1999.

    Google Scholar 

  • Sundaresan, V. Horizontal spread of transposon mutagenesis: new uses for old elements. Trends Plant Sci. 1:184–190; 1996.

    Google Scholar 

  • Takumi, S.; Murai, K.; Mori, N.; Nakamura, C. Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transposase gene. Theor. Appl. Genet. 98:947–953; 1999.

    CAS  Google Scholar 

  • Takumi, S.; Shimada, T. Variation in transformation frequencies among six common wheat cultivars through particle bombardment of scutellar tissues. Genes Genet. Syst. 72:63–69; 1997.

    PubMed  CAS  Google Scholar 

  • Tatham, A. S.; Shewry, P.; Belton, P. S. Structural studies of cereal prolamins, including wheat gluten. St. Paul, MN: AACC; 1990.

    Google Scholar 

  • Terada, R.; Nakayama, T.; Iwabuchi, M.; Shimamoto, K.: A wheat histone H3 promoter confers cell division-dependent and-independent expression of the gus A gene in transgenic rice plants. Plant J. 3:241–252; 1993.

    PubMed  CAS  Google Scholar 

  • Thomashow, M. F.; Panagopoulos, C.; Gordon, M. P.; Nester, E. W. Host range of Agrobacterium tumefaciens is determined by the Ti-plasmid. Nature 283:794–796; 1980.

    Google Scholar 

  • Thompson, J. A.; Drayton, P. R.; Frame, B. R.; Wang, K.; Dunwell, J. M. Maize transformation utilizing silicon carbide whiskers: a review. Euphytica 85:75–80; 1995.

    CAS  Google Scholar 

  • Trieu, A. T.; Burleigh, S. H.; Kardailsky, I. V.; Maldonado-Mendoza, I. E.; Versaw, W. K.; Blaylock, L. A.; Chiou, T. J.; Katagi, H.; Dewbre, G. R.; Weigel, D.; Harrison, M. J. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22:531–541; 2000.

    PubMed  CAS  Google Scholar 

  • Uzé, M.; Potrykus, I.; Sautter, C. Single-stranded DNA. in the genetic transformation of wheat (Triticum aestivum L.): transformation frequency and integration pattern. Theor. Appl. Genet. 99:487–495; 1999.

    Google Scholar 

  • Vain, P.; McMullen, M. D.; Finer, J. J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12:84–88; 1993.

    Google Scholar 

  • Vasil, V.; Brown, S. M.; Re, D.; Fromm, M. E.; Vasil, I. K. Stably transformed callus lines form microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology 9:743–747; 1991.

    CAS  Google Scholar 

  • Vasil, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.

    CAS  Google Scholar 

  • Vasil, V.; Redway, F.; Vasil, I. K. Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.). Bio/Technology 8:429–434; 1990.

    Google Scholar 

  • Vasil, V.; Srivastava, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11:1553–1558; 1993.

    Google Scholar 

  • Viertel, K.; Schmid, A.; Iser, M.; Hess, D. Regeneration of German spring wheat varieties from embryogenic scutellar callus. J. Plant Physiol. 152:167–172; 1998.

    CAS  Google Scholar 

  • Walbot, V. Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:49–82; 1992.

    CAS  Google Scholar 

  • Wang, A. S.; Evans, R. A.; Altendorf, P. R.; Altendorf, P. R.; Hanten, J. A.; Doyle, M. C.; Rosichan, J. L. A mannose selection system for production of fertile transgenic maize plants from protoplasts Plant Cell Rep. 19:654–660; 2000.

    CAS  Google Scholar 

  • Weeks, J. T.; Anderson, O. D.; Blechl, A. E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102:1077–1084; 1993.

    PubMed  CAS  Google Scholar 

  • Weeks, J. T.; Koshiyama, K. Y.; Maier-Greiner, U.; Schaeffner, T.; Anderson, O. D. Wheat transmission using cyanamide as a new selective agent. Crop Sci. 40:1749–1754; 2000.

    Article  CAS  Google Scholar 

  • Witrzens, B.; Brettell, R. I. S.; Murray, F. R.; McElroy, D.; Li, Z.; Dennis, E. S. Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Australian J. Plant Physiol. 25:39–44; 1998.

    Article  CAS  Google Scholar 

  • Wright, M.; Dawson, J.; Dunder, E.; Suttie, J.; Reed, J.; Kramer, C.; Chang, Y.; Novitzky, R.; Wang, H.; Artim-Moore, L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant cell Rep. 20:429–436; 2001.

    CAS  Google Scholar 

  • Yang, P.; Taoka, K.; Nakayama, T.; Iwabuchi, M. Structural and functional characterization of two wheat histone H2B promoters. Plant Mol. Biol. 28:155–172; 1995.

    PubMed  CAS  Google Scholar 

  • Zhang, L.; French, R.; Langenberg, W. G.; Mitra, A. Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease. Transgenic Res. 10:13–19; 2001.

    PubMed  CAS  Google Scholar 

  • Zhou, H.; Arrowsmith, J. W.; Fromm, M. E.; Hironaka, C. M.; Taylor, M. L.; Rodriguez, D.; Pajeau, M. E.; Brown, S. M.; Santino, C. G.; Fry, J. E. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15:159–163; 1995.

    CAS  Google Scholar 

  • Zhou, H.; Stiff, C. M.; Konzak, C. F. Stably transformed callus of wheat by electroporation-induced direct gene transfer. Plant Cell Rep. 12:612–616; 1993.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold N. Trick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

janakiraman, V., Steinau, M., McCoy, S.B. et al. Recent advances in wheat transformation. In Vitro Cell Dev Biol -Plant 38, 404–414 (2002). https://doi.org/10.1079/IVP2002320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002320

Key words

Navigation