Skip to main content
Log in

Photosynthetic and carbohydrate status of easy-and difficult-to-acclimatize sea oats (Uniola paniculata L.) genotypes during In vitro culture and Ex vitro acclimatization

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The photosynthetic and carbohydrate status of an easy-to-acclimatize (EK 16-3) and a difficult-to-acclimatize (EK 11-1) genotype of Uniola paniculata L. (sea oats), a native dune species of the southeastern US, were evaluated during in vitro culture and ex vitro acclimatization. Net photosynthetic rate was eight times greater for EK 16-3 than EK 11-1 plantlets after ex vitro transfer. In vitro-produced leaves were morphologically similar to ex vitro-produced leaves and exhibited similar photosynthetic competence. EK 11-1 plantlets exhibited greater transpiration rates at the time of ex vitro transfer than EK 16-3 plantlets. However, the small magnitude of this difference, although significant, indicated that control of water loss was probably not the main cause for poor acclimatization of EK 11-1 plantlets. Carbohydrate analysis in vitro revealed that EK 16-3 plantlets utilized leaf starch reserves more rapidly than EK 11-1 plantlets. Starch utilization correlated with the development of leaves with expanded leaf blades during in vitro rooting in EK 16-3 plantlets. After ex vitro transfer, both genotypes exhibited significant decreases of starch and soluble sugar content in shoots and roots. However, the higher photosynthetic ability of shoots in EK 16-3 resulted in greater accumulation of shoot soluble sugars than EK 11-1 after 2-wk ex vitro culture. After 6-wk in vitro rooting, there were significantly higher chlorophyll and soluble protein contents, ribulose 1,5-bisphosphate carboxylase (rubisco) and phosphoenolpyruvate carboxylase activities in EK 16-3 than EK 11-1 shoots. These differences also correlated with the development of anatomical and morphological leaf features in EK 16-3 similar to those of greenhouse-produced leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragón, C. E.; Escalona, M.; Capote, I.; Pina, D.; Cejas, I.; Rodriguez, R.; Cañal, M. J.; Sandoval, J.; Roels, S.; Debergh, P.; Gonzalez-Olmedo, J. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitro Cell. Dev. Biol.—Plant 41:550–554; 2005.

    Article  CAS  Google Scholar 

  • Arigita, L.; González, A.; Sánchez Tamés, R. Influence of CO2 and sucrose on photosynthesis and transpiration of Actidinia deliciosa explants cultured in vitro. Physiol. Plant. 115:166–173; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Arnon, D. I. Copper enzymes in isolated chloroplasts; polyphenol oxidases in Beta vulgaris. Plant Physiol. 24:1–15; 1949.

    PubMed  CAS  Google Scholar 

  • Arntzen, C. J.; Briantais, J. M. Chloroplast structure and function. In: Govindjee, ed. Bioenergetics of photosynthesis. New York: Academic Press; 1975:51–113.

    Google Scholar 

  • Ashton, A. R.; Burnell, J. N.; Furbank, R. T.; Jenkins, C. L. D.; Hatch, M. D. Enzymes of C4 photosynthesis. Meth. Plant Biochem. 3:39–72; 1990.

    CAS  Google Scholar 

  • Azcón-Bieto, J. Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiol. 73:681–686; 1983.

    Article  PubMed  Google Scholar 

  • Bachman, G. R.; Whitwell, T. Nursery production of Uniola paniculata (southern sea oats). Hort Technology 5:296–298; 1995.

    Google Scholar 

  • Boersig, M. R.; Negm, F. B. Prevention of sucrose inversion during preparation of HPLC samples. HortScience 20:1054–1056; 1985.

    CAS  Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dyebinding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Branca, C.; Torelli, A.; Fermi, P.; Altamura, M. M.; Bassi, M. Early phases of in vitro culture tomato cotyledons: starch accumulation and protein pattern in relation to the hormonal treatment. Protoplasma 182:59–64; 1994.

    Article  Google Scholar 

  • Brown, W.; Smith, B. N. The Kranz syndrome in Uniola (Gramineae). B. Torrey Bot. Club 101:117–120; 1974.

    Article  Google Scholar 

  • Burgess, T. L.; Blazich, F. A.; Nash, D. L. Seed germination of southern seaoats (Uniola paniculata) as influenced by stratification, temperature, and light. J. Environ. Hort. 20:180–183; 2002.

    Google Scholar 

  • Burgess, T. L.; Blazich, F. A.; Nash, D. L.; Randall-Schadel, B. Influence of selected surface disinfestants, fungicides, and temperature on seed selected surface disinfestants, fungicides, and temperature on seed germination and initial growth of southern seaoats (Uniola paniculata). J. Environ. Hort. 23:4–8; 2005.

    CAS  Google Scholar 

  • Capellades, M.; Lemeur, R.; Debergh, P. Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tissue Organ Cult. 25:21–26; 1991.

    Article  Google Scholar 

  • Crafts-Brandner, S. J.; Salvucci, M. E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129:1773–1780; 2002.

    Article  PubMed  CAS  Google Scholar 

  • De, Y.; Gosselin, A.; Desjardins, Y. Re-examination of photosynthetic capacity of in vitro-cultured strawberry plantlets. J. Am. Soc. Hort. Sci. 118:419–424; 1993.

    Google Scholar 

  • Debergh, P. C.; Zimmerman, R. H. Micropropagation: technology and application. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1991.

    Google Scholar 

  • De la Viña, G.; Pliego-Alfaro, F.; Driscoll, S.; Mitchell, V.; Parry, M.; Lawlor, D. Effects of CO2 and sugars on photosynthesis and composition of avocado leaves grown in vitro. Plant Physiol. Biochem. 37:587–595; 1999.

    Google Scholar 

  • Desjardins, Y. Photosynthesis in vitro—on the factors regulating CO2 assimilation in micropropagation systems. Acta Hort. 393:45–57; 1995.

    CAS  Google Scholar 

  • Donnelly, D. J.; Vidaver, W. E. Pigment content and gas exchange of red raspberry in vitro and ex vitro. J. Am. Soc. Hort. Sci. 109:177–181; 1984.

    CAS  Google Scholar 

  • Estrada-Luna, A. A.; Davies, F. T. Jr.; Egilla, J. N. Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. Plant Cell Tissue Organ Cult. 66:17–24; 2001.

    Article  CAS  Google Scholar 

  • Fuentes, G.; Talavera, C.; Oropeza, C.; Desjardins, Y.; Santamaria, J. M. Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell. Dev. Biol.—Plant 41:69–76;2005.

    Article  CAS  Google Scholar 

  • Furbank, R.; Pritchard, J.; Jenkins, C. Effects of exogenous sucrose feeding on photosynthesis in the C3 plant tobacco and the C4 plant Flaveria bidentis. Aust. J. Plant Physiol. 24:291–299; 1997.

    Article  CAS  Google Scholar 

  • Grout, B. W. W. Photosynthesis of regenerated plantlets in vitro, and the stress of transplanting. Acta Hort. 230:129–135; 1988.

    Google Scholar 

  • Grout, B. W. W.; Aston, M. J. Transplanting of cauliflower plants regenerated from meristem culture. II. Carbon dioxide fixation and the development of photosynthetic ability. Hort. Res. 17:65–74; 1978.

    CAS  Google Scholar 

  • Grout, B. W. W.; Millam, S. Photosynthetic development of micropropagated strawberry plantlets following transplanting. Ann. Bot. 55:129–131; 1985.

    Google Scholar 

  • Haissig, B. E.; Dickson, R. E. Starch measurement in plant tissue using enzymatic hydrolysis. Physiol. Plant. 47:151–157; 1979.

    Article  CAS  Google Scholar 

  • Hartmann, H. T.; Kester, D. E.; Davies, F. T. Jr.; Geneve, R. L. Plant propagation: principles and practices, 7th edn, Upper Saddle River: Prentice Hall; 2002.

    Google Scholar 

  • Hdider, C. Etude du metabolisme carbone et de certains aspects de son interaction avec la nutrition azotee durant la culture in vitro de plantules de fraisier (Fragaria × ananassa Duch.). Ph.D. Dissertation, Universite Laval, Quebec, Canada; 1994.

    Google Scholar 

  • Hdider, C.; Desjardins, Y. Effects of sucrose on P n and phosphoenolpyruvate caroboxylase activity of in vitro cultured strawberry plantlets. Plant Cell Tissue Organ Cult. 36:27–33; 1994.

    Article  CAS  Google Scholar 

  • Hester, M. W.; Mendelssohn, I. A. Seed production and germination response of four Louisiana populations of Uniola paniculata (Gramineae). Am. J. Bot. 74:1093–1101; 1987.

    Article  Google Scholar 

  • Jeong, B. R.; Fujiwara, K.; Kozai, T. Environmental control and photoautotrophic micropropagation. Hort. Rev. 17:123–170; 1995.

    Google Scholar 

  • Kozai, T. Controlled environment in conventional and automated micropropagation. In: Vasil, I. K. ed. Cell culture and somatic cell genetics of plants, Vol. 8. New York: Academic Press; 1991:213–228.

    Google Scholar 

  • Kozai, T. Acclimatization of micropropagated plants. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, Vol. 17, High-tech and micropropagation I; Berlin, Heidelberg: Springer-Verlag; 1991:127–141.

    Google Scholar 

  • Kozai, T.; Iwanami, Y. Effects of CO2 enrichment and sucrose concentration under high photon fluxes on plant growth of carnation (Dianthus caryophyllus L.) in tissue culture during the preparation stage. J. Japan. Soc. Hort. Sci. 57:279–288; 1988.

    Google Scholar 

  • Lilley, R. McC.; Walker, D. A. An improved spectrophotometric assay for ribulose bisphosphate carboxylase. Biochem. Biophys. Acta 358:226–229; 1974.

    PubMed  CAS  Google Scholar 

  • Mangat, B. S.; Pelekis, M.; Cassels, A. C. Changes in the starch content during organogenesis in in vitro cultures of Begonia rex stem explants. Physiol. Plant. 79:267–274; 1990.

    Article  CAS  Google Scholar 

  • McDowell, E. M.; Trump, B. F. Histological fixatives suitable for diagnostic light and electron microscopy. Arch. Path. Lab. Med. 100:405; 1976.

    PubMed  CAS  Google Scholar 

  • Miller, W. B.; Langhans, R. W. Carbohydrate changes of Easter lilies during growth in normal and reduced irradiance environments. J. Am. Soc. Hort. Sci. 114:310–315; 1989.

    CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Philman, N. L.; Kane, M. E. Micropropagation of Uniola paniculata L. (sea oats) from tiller explants. HortScience 29:559; 1994.

    Google Scholar 

  • Piqueras, A.; Van Huylenbroeck, J. M.; Han, B. H.; Debergh, P. C. Carbohydrate partitioning and metabolism during acclimatization of micropropagated Calathea. Plant Growth Regul. 26:25–31; 1998.

    Article  CAS  Google Scholar 

  • Pospíšilová, J.; Solárová, J.; Čatský, J. Photosynthetic responses to stress during in vitro cultivation. Photosynthetica 26:3–18; 1992.

    Google Scholar 

  • Pospíšilová, J.; Tichá, I.; Kadleček, P.; Haisel, D.; Plzáková, Š. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 42:481–497; 1999.

    Article  Google Scholar 

  • Preece, J. E.; Sutter, E. G. Acclimatization of micropropagated plants to the greenhouse and field. In: Debergh, P.; Zimmerman, R., eds. Micropropagation: technology and application. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1991:71–94.

    Google Scholar 

  • Ranamukhaarachchi, D. G. Molecular analysis of genetic diversity in Florida sea-oats (Uniola paniculata) populations: new approaches to generate and analyze molecular data. Ph.D. Dissertation, University of Florida, Gainesville, FL; 2000.

    Google Scholar 

  • Reynolds, E. S. The use of lead citrate at high pH as an electron opaque stain for electron microscopy. J. Cell. Biol. 17:208–213; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez, R.; Cid, M.; Pina, D.; González-Olmedo, J. L.; Desjardins, Y. Growth and photosynthetic activity during acclimatization of sugarcane plantlets cultivated in temporary immersion bioreactors. In Vitro Cell. Dev. Biol.—Plant 39:657–662; 2003.

    Article  Google Scholar 

  • SAS Institute, Inc.: Version 8.02. Cary, NC: SAS Institute, Inc.; 1999.

  • Sharkey, T. D.; Savitch, L. V.; Butz, N. D. Photometric method for routine determination of kcat and carbamylation of rubisco. Photosyn. Res. 28:41–48; 1991.

    Article  CAS  Google Scholar 

  • Sinha, A.; Hofmann, M.; Römer, U.; Köckenberger, E. L.; Roitsch, T. Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol. 128:1480–1489; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A. L.; Palta, J. P.; McCown, B. H. Comparative anatomy and physiology of microcultured, seedling, and greenhouse-grown Asian white birch. J. Am. Soc. Hort. Sci. 111:437–442; 1986.

    Google Scholar 

  • Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastr. Res. 26:31; 1969.

    Article  CAS  Google Scholar 

  • Sturm, A. Invertase: primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 121:1–8; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Swarnkar, P. L.; Bohra, S. P.; Chandra, N. Biochemical studies on initiation of callus in Solanum surattense. J. Plant Physiol. 126:293–296; 1986.

    CAS  Google Scholar 

  • Triques, K.; Rival, A.; Beulé, T.; Dussert, S.; Hocher, V. Developmental changes in carboxylase activities in in vitro cultured coconut zygotic embryos: comparison with corresponding activities in seedlings. Plant Cell Tiss. Organ Cult. 39:227–231; 1997.

    Article  Google Scholar 

  • Valero-Aracama, C. Physiological and anatomical basis for differences in growth performance during in vitro and ex vitro culture of sea oats (Uniola paniculata L.) genotypes. Ph.D. Dissertation, University of Florida, Gainesville, FL; 2005.

    Google Scholar 

  • Van Huylenbroeck, J.; Debergh, P. C. Impact of sugar concentration in vitro on photosynthesis and carbon metabolism during ex vitro acclimatization of Spathiphyllum plantlets. Phys. Plant. 96:298–304; 1996.

    Article  Google Scholar 

  • Van Huylenbroeck, J.; Piqueras, A.; Debergh, P. C. Photosynthesis and carbon metabolism in leaves formed prior to and during ex vitro acclimatization of micropropagated plants. Plant Sci. 134:21–30; 1998.

    Article  Google Scholar 

  • Wagner, R. H. The ecology of Uniola paniculata L. in the dune-strand habitat of North Carolina. Ecol. Monogr. 34:79–96; 1964.

    Article  Google Scholar 

  • Wetzstein, H. Y.; Sommer, H. E. Leaf anatomy of tissue-cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Am. J. Bot. 69:1579–1586; 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Kane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valero-Aracama, C., Kane, M.E., Wilson, S.B. et al. Photosynthetic and carbohydrate status of easy-and difficult-to-acclimatize sea oats (Uniola paniculata L.) genotypes during In vitro culture and Ex vitro acclimatization. In Vitro Cell.Dev.Biol.-Plant 42, 572–583 (2006). https://doi.org/10.1079/IVP2006822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2006822

Key words

Navigation