Skip to main content
Log in

Protoplast electrofusion between common wheat (Triticum aestivum L.) and Italian ryegrass (Lolium multiflorum Lam.) and regeneration of mature cybrids

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

This study describes the development of electrofusion techniques using the ‘donor-recipient’ model for the production of cybrids between common cultivated winter wheat (Triticum aestivum L.) cv. Jinghua No. 1 and a phylogenetically remote, sexually incompatible grass species, Italian ryegrass (Lolium multiflorum Lam.), which belong to two different subtribes: Triticinae and Loliinae. Wheat protoplasts were metabolically inactivated by iodoacetamide before fusion, while protoplasts of Italian ryegrass were X-ray irradiated before protoplast isolation. The suspension cells were directly used to optizmize the inactivation parameters. By exploring the minimum irreversible membrane breakdown strength, the electrofusion parameters were optimized just a few minutes before electrofusion began. A total of 108 green plantlets were obtained, and about half of the green plants uncontrollably necrotized. Among all green plants, 14 were rooted normally and transplanted in growth chamber or field and developed to maturity. All these transplanted plants were male sterile with smaller and off-white anthers. Seeds were obtained by crossing with Jinghua No. 1. Three transplanted regenerants possessed the characteristics of glume facing the rachis, which was the taxonomic characteristic distinguishing the two subtribes of Triticinae and Lolliinae. Although Southern blot hybridization analysis of 33 randomly selected regenerants using a wheat ribosomal DNA probe (pHA71) did not find any differences to wheat, analysis using two mitochondrial probes B342 (cox l), 490 (Pro II) and one chloroplastidic probe pHve H5 revealed that 31 plants were ‘true cybrids’ by showing ryegrass-specific band(s) or new band(s). It also showed that the mitochondria and chloroplasts were not coexistent as the restriction fragment length polymorphism band of Italian ryegrass was not detected by the mitochondrial probes 7 (26s), B342 (cox I), pHJ2-7-1 (cox II), B30 (atp9), and the chloroplast probe pHvc P5. To regenerate the cybrids, the regeneration capacity of the recipient (wheat) was crucial in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagi, H.; Sakamoto, M.; Negishi, T.; Fujimora, T. Construction of rice hybrid plants. Mol. Gen. Genet. 215:501–506 1989.

    Article  CAS  Google Scholar 

  • Bajaj, Y. P. S. Somatic hybridization—a rich source of genetic variability. In: Bajaj, Y. P. S., ed Biotechnology in agriculture and forestry, vol. 27. New York: Springer Verlag; 1994:3–32.

    Google Scholar 

  • Chalhoub, B. A.; Thibault, S.; Laucou, V.; Rameau, C.; Hofte, H.; Cousin, R. Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels. Bio Techniques 22:216–220; 1997.

    CAS  Google Scholar 

  • Chen, H. M.; Xia, G. M. Plant regeneration from somatic asymmetric hybridization between wheat and four intergeneric grass species. In: Xu, Z. H., ed Plant biotechnology for sustainable development of agriculture. Proceedings of the second Asia-Pacific conference on plant cell and tissue culture. Beijing: China Forestry Publishing House; 1996:97–103.

    Google Scholar 

  • Cheng, A.-X.; Xia, G.-M.; Chen, H.-M. DNA transfer from wild millet to common wheat by asymmetric somatic, hybridization. Acta Bot. Sin. 46:1114–1121; 2004.

    CAS  Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsu, C.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659–668; 1975.

    Google Scholar 

  • Dudits, D.; Fejer, O.; Hadlaczky, G.; Lazar, G. B.; Horvath, G. Intergeneric gene transfer mediated by plant protoplast fusion. Mol. Gen. Genet. 179:283–288; 1980.

    Article  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojimas K. Nutrition requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–181; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Ge, T. M.; Yu, Y. J. Establishment and maintenance of embryogenic suspension culture of wheat (Triticum aestivum L.). J. Wuhan. Bot. Res. 13:193–197; 1995.

    CAS  Google Scholar 

  • Ge, T. M.; Yu, Y. J. A powerful medium for strengthening and propagation of wheat regenerated plantlets Electron. J. Biol 1:33–35 2005 (ISSN 1860-3122 URL: < http://www.ejbio.com/pp./33.pdf>.

    Google Scholar 

  • Ge, T. M.; Zhang, R. D.; Qin, F. L.; Yu, Y. J.; Xie, Y. F. Direct embryogenesis from protoplast of winter wheat. Chin. J. Biotechnol. 16:609–613; 2000a.

    CAS  Google Scholar 

  • Ge, T. M.; Zhang, R. D.; Qin, F. L.; Yu, Y. J.; Xie, Y. F. Establishment of embryogenic suspension and protoplast culture of Italian ryegrass. J. Huazhong Agric. Univ. 19:310–312; 2000b.

    CAS  Google Scholar 

  • Gleba, Y. Y.; Sytnik, K. M. Protoplasts fusion genetic engineering in higher plants. In: Shoeman, R., ed. Monographs on theoretical and applied genetics, vol. 8 Berlin, Heidelberg, New York: Springer Verlag; 1984:1–220.

    Google Scholar 

  • Harris, R.; Wright, M.; Byrne, M.; Varnum, J.; Brightwell, B.; Schuber, K. Calfus formation and plantlet regeneration from protoplasts derived from suspension cultures of wheat (Triticum aestivum L.). Plant Cell Rep. 7:337–340; 1988.

    Article  Google Scholar 

  • Hayashi, Y.; Kyozuka, J.; Shimamoto, K. Hybrids of rice (Oryza sativa L.) and wild Oryza species obtained by cell fusion. Mol. Gen. Genet. 214:6–10; 1988.

    Article  Google Scholar 

  • Hinnisdaels, S.; Jacobs, M.; Negrutiu, I. Asymmetric somatic hybrids. In: Bajaj, Y. P. S. ed. Biotechnology in agriculture and forestry, vol. 27. New York: Springer Verlag; 1994:57–71.

    Google Scholar 

  • Jahne, A.; Lazzeri, P. A.; Jager-Gussen, M.; Lorz, H. Plant regeneration from embryogenic cell suspensions derived from anther cultures of barley (Hordeum vulgar L.). Theor. Appl. Genet. 82:74–80; 1991.

    Article  Google Scholar 

  • Kumar, A.; Cocking, E. C. Protoplast fusion: a novel approach to organelle genetics in higher plants. Am. J. Bot. 8, 74:1289–1303; 1987.

    Article  Google Scholar 

  • Li, L. L.; Xia, G. M.; Chen, Y. L.; Chen, H. M. Asymmetric, somatic hybridization between wheat and millet. Acta Phytophysiol. Sin. 27:455–460; 2001.

    CAS  Google Scholar 

  • Li, Z. Y.; Xia, G. M.; Chen, H. M. Somatic embryogenesis and plant regeneration from protoplasts isolated from embryogenic cell suspensions of wheat (Triticum aestivum L.). Plant Cell Tiss. Organ. Cult. 28:79–85; 1992.

    Article  Google Scholar 

  • Lynch, P. T.; Jones, B. Electrofusion manual. Nottingham, UK University of Nottingham; 1989; 16–20.

    Google Scholar 

  • Muller, A. J.; Grafe, R. Isolation and characterization of cell lines of Nicotiana tobacum lacking nitrate reductase. Mol. Gen. Genet. 161:67–76; 1978.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Negrutiu, I.; Hinnisdaels, S.; Mouras, A.; Gill, B. S.; Gharti-Chhetri, G. C.; Davey, M. R.; Gleba, Y. Y.; Sidorov, V.; Jacobs, M Somatic versus sexual hybridization: features, facts and future. Acta Bot. Neerl 38:253–272; 1989.

    Google Scholar 

  • Saghai-Maroof, M. A.; Soliman, K. M.; Jorgensen, R. A.; Allard, R. W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl Acad. Sci. USA 81:8014–8018; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning—a laboratory manual, 2nd edn. New York: Cold Springer Harbor Laboratory Press; 1989.

    Google Scholar 

  • Sharma, H. C. How wide can a wide cross be?. Euphytica 82:43–64; 1995.

    Article  Google Scholar 

  • Spangenberg, G.; Valles, M. P.; Wang, Z. Y.; Montavon, P.; Nagel, J.; Potrykus, I. Asymmetric somatic hybridization between tall fescue (Festuca arundinacea Schreb.) and irradiated Italian ryegrass (Lolium multiflorum Lam.) protoplasts. Theor. Appl. Genet. 88:509–519; 1994.

    Article  Google Scholar 

  • Szarka, B.; Göntér, I.; Molnár-Láng, M.; Mórocz, S.; Dudits, D. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants. Theor Appl. Genet. 105:1–7; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Terada, R.; Kyozuka, J.; Nishibayashi, S.; Shimamoto, K. Plantlet regeneration from somatic hybrid of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola Vasing). Mol. Gen. Genet. 210:39–43; 1987.

    Article  Google Scholar 

  • Vasil, V.; Redway, F.; Vasil, I. K. Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.). Biotechnology 8:429–434; 1990.

    Article  Google Scholar 

  • Wei, Y.; Guangmin, X.; Daying, Z.: Huimin, C. Transfer of salt tolerance from Aeleuropus littorulis sinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Sci. 161:259–266; 2001.

    Article  PubMed  Google Scholar 

  • Xia, G. M.; Chen, H. M. Plant regeneration from intergeneric somatic hybridization between Triticum aestivum L. and Leymus chinensis (Trin.) Izvel. Plant Sci. 120:197–203; 1996.

    Article  CAS  Google Scholar 

  • Xia, G. M.; Wang, H.; Chen, H. M. Plant regeneration for intergeneric asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Russian wildrye (Psathyrostachys juncea (Fisch) Neveski) and couch grass (Agropyron elongatum Host Neviski). Chin. Sci. Bull. 41:1382–1386; 1996.

    Google Scholar 

  • Xiang, F.; Xia, G.; Chen, H. Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L. Sci. China (Series C) 46:243–252; 2003.

    CAS  Google Scholar 

  • Xu, C.; Xia, G.; Zhi, D.; Xiang, F.; Chen, H Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization. Plant Sci. 165:1001–1008; 2003.

    Article  CAS  Google Scholar 

  • Zhang, W. Q.; Tang, X. Z. Isozyme and crop genetic improvement. Beijing: Beijing Agricultural University Press; 1993.

    Google Scholar 

  • Zhou, A. F.; Xia, G. M.; Chen, H. M. Somatic hybridization between Triticum aestivum and Haynaldia villosa. Sci. China (Series C) 39:617–626; 1996.

    Google Scholar 

  • Zhu, G. F.; Ge, T. M.; Yu, Y. J. Protoplast culture and wheat (Triticum aestivum L.) plantlet regeneration. J. Huazhong Agric. Univ. 14:315–321; 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, T.M., Lin, X.H., Qin, F.L. et al. Protoplast electrofusion between common wheat (Triticum aestivum L.) and Italian ryegrass (Lolium multiflorum Lam.) and regeneration of mature cybrids. In Vitro Cell.Dev.Biol.-Plant 42, 179–187 (2006). https://doi.org/10.1079/IVP2005742

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005742

Key words

Navigation