Skip to main content
Log in

Shoot apical meristem: A sustainable explant for genetic transformation of cereal crops

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Immature zygotic embryo has been the widely used explant source to develop embryogenic callus lines, cell suspensions and protoplasts for transformation of cereal crops including maize, wheat, rice, oat, barley, sorghum, and millet. However, the lack of competence of immature embryos in certain elite lines is still a barrier to rontine production of transgenic cereal crops in certain commercial cultivars. In addition, a great deal of effort is required to produce immature embryos, manipulate cultures, of immature embryos or their cell suspensions, and cryoperserve cultures for further use. In addition, undifferentiated cells may have reduced regenerability after a few months, of in vitro culture. Alternative explants and regeneration systems for efficient transformation of cereal crops are needed to avoid or reduce the above limitations. During the past decade, scientists have successfully manipulated the shoot apical meristerms from seedlings of maize oat, sorghum, millet, wheat, and barley in an effort to develop a less genetype-dependent and efficient cereal regneration system that can be maintained in vitro for long pertiods of time without the need for cryopreservation. Furthermore, apical mesistem regeneration systems were used to stably transform maize, wheat, rice, oat, barley, sorghum, and millet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Able, J. A.; Rathus, C.; Godwin, L. D. The investigation of optimal bombardment paramenters for transient, and stable transgene expression in sorghum. In Vitro Cell Dev. Biol. Plant 37:341–343; 2001.

    Article  CAS  Google Scholar 

  • Abumhadi, N.; Trifonova, A.; Takumi, S.; Nakamura, C.; Todorovska, F.; Getov, L.; Christov, N.; Atanassov, A. Development of the particle inflow gun and optimizing the particle bombardment method for efficient genetic transformation in mature embryos of cereals. Biotechnol. Biotec. Eq. 15:87–96; 2001.

    Google Scholar 

  • Ahmad, A.; Maqbool, S.; Riazuddin S.; Sticklen, M. B. Expression of synthetic CryIAb and Cryl Ac genes in Basmati, rice (Oryza sativa L.) variety 370 via Agrobacterium-mediated transformation for the control of the European corn boren (Ostrinia nubilalis). In vitro Cell. Dev. Biol. Plant 33:213–220; 2002a.

    Google Scholar 

  • Ahmad, A.; Zhong, H.; Wang, W.; Sticklen, M. B. Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L.). In Vitro Cell. Dev. Biol. Plant 38:163–167; 2002b.

    Article  Google Scholar 

  • Ahmed, K. Z.; Omirulleh, S.; Sagi, F.; Dudits, D. Factors affecting transient expression of vector constructs in wheat protoplasts. Acta Biol. Hung. 48:209–220; 1997.

    PubMed  CAS  Google Scholar 

  • Amoah, B. K.; Wu, H.; Sparks, C.; Jones, H. D. Factors influencing Agrobacterium-mediated transient expression of uidA, in wheat inflorescence tissue. J. Exp. Bot. 52:1135–1142; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Aulinger, I. E.; Peter, S. O.; Schmidt, J. E.; Stamp, P. Gametic embryos of maize as a target for biolistic transformation: comparison to immature zygotic embryos. Plant Cell Rep. 21:585–591; 2003.

    PubMed  CAS  Google Scholar 

  • Balconi, C.; Perugini, L.; Castelltti, S.; Reali, A.; Russo, S.; Chan, M. T.; Lupotto, E. Agrobacterium tumefuciens-mediated tranformation of rice (Oryza sativa L. ssp. japonica) Italian cultivars. I. Interaction among Agrobacterium strains and rice genotypes in embryogenic callus of somatic and gametic origin. J. Genet. Breed., 52:313–323; 1993.

    Google Scholar 

  • Baruah, W. J.; Harwood, W. A.; Lonsdale, D. A.; Harvey, A.; Hull, R.; Snape, J. W. Luciferase as a reporter gene for transformation studies in rice (Oryza satira L.). Plant Cell Rep. 18:715–720; 1999.

    Article  Google Scholar 

  • Battraw, M.; Hall, T. C. Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and beta glucuronidase genes. Theor. Appl. Genet. 82:161–168; 1991.

    Article  CAS  Google Scholar 

  • Bhaskaran, S.; Smith, B. H. Control of morphogenesis in sorghum by 2,4-dichlorophoenoxyasccetic acid and cytokinins. Ann. Bot. 64:217–224; 1989.

    CAS  Google Scholar 

  • Bidney, D.; Scelonge, C.; Martich, J.; Burrus, M.; Sims, L.; Huffman, G. Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol. 18:301–313; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bilang, R.; Zhang, S.; Leduc, N.; Iglesias, V. A.; Gisel, A.; Simmonds, J.; Potrykus, I.; Sautter, C. Transient gene expression in vegetative shoot apical metistems of wheat after ballistic microtargeting. Plant J. 4:735–744; 1993.

    Article  CAS  Google Scholar 

  • Bohorova, R.; Frutos, R.; Royer, M.; Estanol, P.; Pacheco, M.; Rascon, Q.; McLean, S.; Hoisington, D. Novel, synthetic Bacillus thuringiensis crylB gene and the crylB-crylAb translational fusion confer resistance to southwestern corn borer, sugarcance borer and fall armyworm in transgenic tropical maize. Theor. Appl. Genet. 103:817–826; 2001.

    Article  CAS  Google Scholar 

  • Bommineni, V. R.; Cheng, P. C.; Walden, D. B. Reorganization of cells in the maize apical dome within six days of culture after microsurgery. Maydica 40:289–298; 1995.

    Google Scholar 

  • Brar, G. S.; Cohen, B. A.; Vick, C. L.; Johnson, G. W. Recovery of transgenic peanut (Arachis hypogaea L.) plants from clite cultivars utilizing ACCELL® technology. Plant J. 5:745–753; 1994.

    Article  Google Scholar 

  • Bregitzer, P.; Tonks, D. Inheritance and expression of transgenes in barley. Crop Sci. 43:4–12; 2003.

    CAS  Google Scholar 

  • Carlini, L. E.; Ketudat, M.; Parsons, R. L.; Prabhakar, S.; Schmidt, R. J.; Guiltinan, M. J. The maize EmBP-1 orthologue differentially regulates Opaque2-dependent gene expression in yeast and cultured maize endosperm cells. Plant Mol. Biol. 41:339–349; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, A. R.; Letarte, J.; Chen, J.; Kasha, K. J. Visual screening of microspore-derived transgenic barley (Hordeum vulgare L.) with green-fluorescent protein. Plant Cell Rep. 20:331–337; 2001.

    Article  CAS  Google Scholar 

  • Chandra, A.; Pental, D. Regeneration and genetic transformation of grain legumes: an overview. Curr. Sci. 34:381–387; 2003.

    Google Scholar 

  • Chen, D. F.; Dale, P. J. A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. Transgenic Res. 1:93–100; 1992.

    Article  CAS  Google Scholar 

  • Chen, L.; Zhang, S.; Beachy, R. N.; Fauquet, C. M. A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Rep. 18:25–31; 1998.

    Article  Google Scholar 

  • Cheng, Z. M.; He, X. Y.; Chen, C. C.; Zhang, J.; Wu, M. S.; Zhou, G. Transgenic wheat plants resistant to barley yellow dwarf virus obtained by pollen tube pathway-mediated transformation In: Scientia Agricultura Sinica, ed. Chinese Agricultural Sciences: for the compliments to the 40th anniversary of the founding of the Chinese Academy of Agricultural Sciences. Beijing: China Agricultural SciTech Press; 1997:98–108.

    Google Scholar 

  • Chibbar, R. N.; Baga, M.; Caswell, K.; Repellin, A.; Leung, N.; Abdel Aal, E.; Hucl, P.; Slinkard, A. E. Genetic transformation strategies to alter starch structure in wheat. In: Slinkard, A. E., ed. Proc. Ninth Int. Wheat Genetics Symp. University of Saskatchewan. Saskatoon, Canada: University Extension Press; 1998:167–170.

    Google Scholar 

  • Chibbar, R. N.; Kartha, K. K.; Datla, R. S.; Leung, N.; Caswell, K.; Mallard, C. S.; Steinhauer, L. The effect of different promoter sequences on transient expression of gus reporter gene in cultured barley (Hordeum vulgare L.) cells. Plant Cell Rep. 12:506–509; 1993.

    Article  CAS  Google Scholar 

  • Cho, M. J.; Choi, H. W.; Okamoto, D.; Zhang, S.; Lemaux, P. G. Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep. 21:467–474; 2003.

    PubMed  CAS  Google Scholar 

  • Cho, M.; Wen, J.; Lemaux, P. G. High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci. 148:9–17; 1999.

    Article  CAS  Google Scholar 

  • Choi, H. W.; Lemaux, P. G.; Cho, M. J. Long-term stability of transgene expression driven by barley endosperm-specific hordein promoters in transgenic barley. Plant Cell Rep. 21:1103–1120; 2003.

    Article  CAS  Google Scholar 

  • Christou, P.; Ford, T. L. Recovery of chimeric rioe plants from dry seed using electric discharge particle acceleration. Ann. Bot. 75:449–454; 1995.

    Article  Google Scholar 

  • Christou, P.; McCabe, D. E.; Martinell, B. J.; Swain, W. F. Soybean genetic engineering—commercial production of transgenic plants. Trends Biotechnol. 8:145–151; 1990.

    Article  CAS  Google Scholar 

  • D'Halluin, K.; Bonne, E.; Bossut, M.; Beuckeleer, M. D.; Leemans, J. Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505; 1992.

    Article  PubMed  Google Scholar 

  • Devi, P.; Sticklen, M. B. Genetic culturing shoot tip of pearl millet [Pennisctum glaucum (L.) R. Br.] and optimal microprojectile bombardment parameters for transient expression. Euphytica 125:45–50; 2002.

    Article  CAS  Google Scholar 

  • Devi, P.; Zhong, H.; Sticklen, M. B. In vitro morphogenesis of pearl millet (Pennisetum glaucum. L.): efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Rep. 56:546–550; 2000.

    Article  Google Scholar 

  • Dong, Y. Z.; Duan, S. J.; Zhao, L. Y.; Yang, X. H.; Jia, S. R. Production of transgenic millet and maize plants by particle bombardment. Sci. Agric. Sinica 32:9–13; 1999.

    CAS  Google Scholar 

  • Dong, Y. Z.; Jia, S. R. Optimization of parameters influencing gene delivery into cell suspension cultures of wheat by microprojectile bombardment. Sci. Agric. Sinica 31:78–79; 1998.

    Google Scholar 

  • Eapen, S.; George, L. High frequency plant regeneration through somatic embryogenesis in finger millet. Plant Sci. 61:127–130; 1989.

    Article  Google Scholar 

  • Emani, C.; Sunilkumar, C.; Rathore, K. S. Transgene silencing and reactivation in sorghum. Plant Sci. 162:181–192; 2002.

    Article  CAS  Google Scholar 

  • Endo, S.; Sugita, K.; Sakai, M.; Tanaka, H.; Ebinuma, H. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J. 30:115–122; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Escudero, J.; Neuhaus, C.; Schlappi, M.; Holm, B. T-DNA transfer in meristematic cells of maize provided with intracellular Agrobacterium. Plant J. 10:355–360; 1996.

    Article  CAS  Google Scholar 

  • Fang, Y. D.; Akula, C.; Altpeter, F. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA barley genomic DNA junctions. J. Plant Physiol. 159:1131–1138; 2002.

    Article  CAS  Google Scholar 

  • Folling, L.; Olesen, A. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep. 20:629–636; 2001.

    Article  CAS  Google Scholar 

  • Frame, B. R.; Drayton, P. R.; Baguall, S. V.; Lewnau, C. J.; Bullock, J. M.; Willson, H. M.; Dunwell, J. M.; Thompson, J. A.; Wang, K. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 6:941–948; 1994.

    Article  CAS  Google Scholar 

  • Frame, B. R.; Shou, H.; Chikwamba, R. K.; Zhang, Z.; Xiang, C.; Fonger, T. M.; Pegg, S. E. K.; Li, B.; Nettleton, D. S.; Pei, D. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129:13–22; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Frame, B. R.; Zhang, H.; Cocciolone, S. M.; Sidorenko, L. V.; Dietrich, C. R.; Pegg, S. E.; Zhen, S.; Schnable, P. S.; Wang, K. Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell. Dev. Biol. Plant 36:21–29; 2000.

    Article  Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C.; Williams, R.; Thomas, J.; Klein, M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Fumatsuki, H.; Kuroda, H.; Kihara, M.; Lazzeri, P. A.; Muller, E.; Lörz, H.; Kishinami, I. Fertile transgenic barley generated by direct DNA transfer to protoplast. Theor. Appl. Genet. 91:707–712; 1995.

    Google Scholar 

  • Ganeshan, S.; Baga, M.; Harvey, B. L.; Rossnagel, G. B.; Scoles, G. L.; Chibbar, R. N. Production of multiple shoots from the Thidiazuron treated mature embryos and leaf base/apical meristems of barley (Hordeum vulgare L.). Plant Cell Tiss. Organ Cult. 73:57–64; 2003.

    Article  CAS  Google Scholar 

  • Geest, A. H. M.; Petolino, J. F. Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny. Plant Cell Rep. 17:760–764; 1993.

    Article  Google Scholar 

  • Girgi, M.; O'Kennedy, M.; Morgenstern, A.; Mayer, G.; Loerz, H.; Oldach, K. Transgenie and herbicide resistant pearl millet (Pennisetum glaucum L.) via microprojectile bombardment of scutellar tissue. Mol. Breed. 10:243–252; 2002.

    Article  CAS  Google Scholar 

  • Gless, C.; Loerz, H.; Jaehne, G. A. Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J. Plant Physiol. 152:151–157; 1998.

    CAS  Google Scholar 

  • Godwin, L.; Chikwamba, R.; Hacker, J. B.; Imrie, B. C. Fertile transgenic grain sorghum (Sorghum bicolor L. Moench.) plants via Agrobacterium. In: Imrie, B. C.; Hacker, J. B., eds. Focused plant improvement: towards responsible and sustainable agriculture. Proc. Tenth Australian Plant Breeding Conf., Gold Coast; 1993:253–257.

  • Goldman, J. J.; Hanna, W. W.; Fleming, G.; Ozias-Akins, P. Fertile transgenic pearl millet plants recovered through microprojectile bombardment and phosphinothricin selection and apical meristem-inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep. 21:999–1009; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Golovkin, M. V.; Abraham, M.; Morocz, S.; Bottka, S.; Feher, A.; Dudits, D. Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci. 90:41–52; 1993.

    Article  CAS  Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L.; Adams, T. R.; Daines, R. J.; Start, W. G.; O'Brien, J. V.; Chambers, S. A.; Adams, W. R.; Willetts, N. G.; Rice, T. R.; Mackey, C. J.; Krueger, R. W.; Kausch, A. P.; Lemaux, P. G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gould, J.; Devey, M.; Hasegawa, O.; Ulian, E. C.; Peterson, G.; Smith, R. H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95:426–434; 1991.

    PubMed  CAS  Google Scholar 

  • Grimsley, N. H.; Ramos, C.; Hein, T.; Hohn, B. Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Bio/Technology 6:185–189; 1989.

    Article  Google Scholar 

  • Grosset, J.; Alay, R.; Gautier, M. F.; Menossi, M.; Martinez-Izquierdo, J. A.; Joudrier, P. Characterization of a barley gene coding for an alpha amylase inhibitor subunit (CMd protein) and analysis of its promoter in transgenic tobacco plants and in maize kernels by microprojectile bombardment. Plant Mol. Biol. 34:331–338; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gürel, F.; Gözükirmizi, N. Optimization of gene transfer into barley (Hordeum vulgare L.) mature embryos by tissue electroporation. Plant Cell Rep. 19:787–791; 2000.

    Article  Google Scholar 

  • Hagio, T.; Blowers, A. D.; Earle, E. D. Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep. 10:260–264; 1991.

    Article  CAS  Google Scholar 

  • Hansen, G.; Shillito, R. D.; Chilton, M. D. T-strand integration in maize protoplasts after a codelivery of a T-DNA substrate and virulence genes. Proc. Natl Acad. Sci. USA 94:11726–11730; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Harwood, W. A.; Ross, S. M.; Bulley, S. M.; Travella, S.; Busch, B.; Harden, J.; Snape, J. W. Use of the firefly luciferase gene in a barley (Hordeum vulgare L.) transformation system. Plant Cell Rep. 21:320–326; 2002.

    Article  CAS  Google Scholar 

  • Hauptmann, R. M.; Vasil, V.; Ozias-Akins, P.; Tabaeizadeh, Z.; Rogers, S. G.; Fraley, R. T.; Horsch, R. B.; Vasil, I. K. Evaluation of selectable markers for obtaining stable transformation in Gramineae. Plant Physiol. 86:602–606; 1988.

    PubMed  CAS  Google Scholar 

  • Heath, J. D.; Boulton, M. I.; Raineri, D. M.; Doty, S. L.; Mushegian, A. R.; Charles, T. C.; Davies, J. W.; Nester, E. W. Discrete regions of the sensor protein VirA determine the strain-specific ability of Agrobacterium to agroinfeet maize. Mol. Plant Microbe Interact. 10:221–227; 1997.

    PubMed  CAS  Google Scholar 

  • Hiei, Y.; Komari, T.; Kubo, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35:205–218; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271–282; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hiruki, C.; Kakuta, H.; Hashidoko, Y.; Ge, Z.; Figueiredo, G.; Mizutani, J. Biolistic delivery of foregign DNA or genomic transcripts of plant virus full-length cDNA clones into monocotyledonous and dicotyledonous plant tissues. Proc. Japan Acad. Series B, Phys. Biol. Sci. 69:244–247; 1993.

    CAS  Google Scholar 

  • Horvath, H.; Rostoks, N.; Brueggenan, R.; Steffenson, B.; Von-Wettstein, D.; Kleinhofs, A. Genetically engineered stem rust resistance in barley using the Rpgl gene. Proc. Natl Acad. Sci. USA 100:364–369; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Howe, A. R.; Gasser, C. S.; Brown, S. M.; Padgette, S. R.; Hart, J.; Parker, G. B.; Fromm, M. E.; Armstrong, C. L. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol. Breed. 10:153–164; 2002.

    Article  CAS  Google Scholar 

  • Hueros, C.; Gomez, E.; Cheikh, N.; Edwards, J.; Weldon, M.; Salamini, F.; Thompson, R. D. Identification of a promoter sequence from the BETL1 gene cluster able to confer transfer-cell-specific expression in transgenic maize. Plant Physiol. 121:1143–1152; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Huttly, A. K.; Baulcombe, D. C. A wheat alpha-Amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. EMBO 8:1907–1913; 1989.

    CAS  Google Scholar 

  • Iglesias, V. A.; Gisel, A.; Bilang, R.; Ledue, N.; Potrykus, I.; Sautter, C. Transient expression of visible marker genes in meristem cells of wheat embryos after ballistic micro-targeting. Planta 192:84–91; 1994a.

    CAS  Google Scholar 

  • Iglesias, V. A.; Gisel, A.; Potrykus, I.; Sautter, C. In vitro germination of wheat proembryos to fertile plants. Plant Cell Rep. 13:377–380; 1994b.

    Article  CAS  Google Scholar 

  • Irish, E. E. Additional vegetative growth in maize reflects expansion of fates in preexisting tissue, not additional divisions by apical initials. Dev. Biol. 197:198–204; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Irish, E.; Jegla, D. Regulation of extent of vegetative development of the maize shoot meristem. Plant J. 11:63–71; 1997.

    Article  Google Scholar 

  • Irish, E. E.; Nelson, T. M. Identification of multiple stages in the conversion of maize meristems from vegetative to floral development. Development 112:891–898; 1991.

    Google Scholar 

  • Ishida, Y.; Saito, H.; Ohta, S.; Hiei, Y.; Komari, T.; Kumashiro, T. High efficieney transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Bio/Technology 14:745–750; 1996.

    Article  CAS  Google Scholar 

  • Jardinaud, M. F.; Souvre, A.; Beckert, M.; Alibert, C. Optimization of DNA transfer and transient beta-glucuronidase expression indelectroporated maize (Zea mays L.) microspores. Plant Cell Rep. 15:55–58; 1995.

    Article  Google Scholar 

  • Jeoung, J. M.; Krishnaveni, S.; Muthukrishnan, S.; Trick, H. N.; Liang, G. H. Optimization of sorghum transformation parameters using genes for green fluorescent protein and beta-glucuronidase as visual markers. Hereditas Lund. 137:20–28; 2002.

    Article  CAS  Google Scholar 

  • Kant, T.; Kothari, S. L.; Kononowicz, H.; Hodges, T. K. Agrobacterium tumefaciens-mediated transformation of rice using coleoptile and mature seed-derived callus. J. Plant Biochem. Biotechnol. 10:121–126; 2001.

    Google Scholar 

  • Kartha, K. K., Moristem culture and germplasm preservation. In: Kartha, K. K., ed., Cryopreservation of plant cells and organs. Boca Raton, FL: CRC Press Inc.; 1985:115–134.

    Google Scholar 

  • Khanna, H. K.; Raina, S. K. Agrobacterium-mediated transformation of indica rice cultivars using binary and superbinary vectors. Aust. J. Plant Physiol. 26:311–324; 1999.

    CAS  Google Scholar 

  • Khanna, H. K.; Daggard, G. E. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep. 21:429–436; 2003.

    PubMed  CAS  Google Scholar 

  • Kihara, M.; Saeki, K.; Ito, K. Rapid production of fertile transgenic barley (Hordeum vulgare L.) by direct gene transfer to primary callus-derived protoplasts. Plant Cell Rep. 17:937–940; 1998.

    Article  CAS  Google Scholar 

  • Kisaka, H.; Sano, H.; Kameya, T. Characterization of transgenic rice plants that express rgpl. the gene for a small GTP-binding protein from rice. Theor. Appl. Genet. 97:810–815; 1998.

    Article  CAS  Google Scholar 

  • Knudsen, S.; Muller, M. Transformation of the developing barley endoperm by particle bombardment. Planta 185:330–336; 1991.

    Article  CAS  Google Scholar 

  • Koprek, T.; Hänsch, R.; Nerlich, A.; Mendel, R. R.; Schulze, J. Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci. 119:79–91; 1996.

    Article  CAS  Google Scholar 

  • Koziel, M. G.; Beland, G. L.; Bowman, C.; Carozzi, N. B.; Crenshaw, R.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.; Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M. R.; Merlin, E.; Rhodes, R.; Warren, G. W.; Wright, M.; Evola, S. V. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • Krishnaveni, S.; Jeoung, J. M.; Muthukrishnan, S.; Liang, G. H. Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot [Sorghum bicolor (L.) Moench]. J. Genet. Breed. 55:151–158; 2001.

    CAS  Google Scholar 

  • Kuai, B.; Perret, S.; Wan, S. M.; Dalton, S. J.; Bettany, A. J. E.; Morris, P. Transformation of oat and inheritance of bar gene expression. Plant Cell Tiss. Organ Cult. 66:79–88; 2001.

    Article  CAS  Google Scholar 

  • Lambe, P.; Dinant, M.; Deltour, R. Transgenic pearl millet (Pennisetum glaucum): 1. Transgenic crops. Biotechnol. Agric. For. 46:84–108; 2000.

    CAS  Google Scholar 

  • Lambe, P.; Dinant, M.; Matagne, R. Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and betaglucuronidase (gus) genes in transgenic pearl millet (Pennisetum glaucum) callus. Plant Sci. 108:51–62; 1995.

    Article  CAS  Google Scholar 

  • Lambe, P.; Mutambel, H. S. N.; Deltor, R.; Dinant, M. Somatic embryogenesis in pearl millet: strategies to reduce genotype limitation and to maintain long term totipotency. Plant Cell Tiss. Organ Cult. 55:23–29; 1999.

    Article  Google Scholar 

  • Laursen, C. M.; Krzyzek, R. A.; Flick, C.E.; Anderson, P. C.; Spencer, T. M. Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol. Biol. 24:51–61; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Leekband, G.; Lörz, H. Transformation and expression of a stilberne synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96:1004–1012; 1998.

    Article  Google Scholar 

  • Li, B.; Leung, N.; Caswell, K.; Chibbar, R. N. Recovery and characterization of transgenic plants from two spring wheat cultivars with low embryogenesis by the bombardment of isolated seutella. In Vitro Cell. Dev. Biol. Plant 39:12–19; 2003.

    Google Scholar 

  • Li, W.; Masilamany, P.; Kasha, K.; Pauls, K. Developmental, tissue culture, and genotypic factors affecting plant regeneration from shoot apical meristems of germinated Zea mays L. seedlings. In Vitro Cell. Dev. Biol. Plant 38:285–292; 2002.

    Google Scholar 

  • Lincoln, C.; Long, J.; Yamaguchi, T.; Serikawa, K.; Hake, S. A knotted-like homobox gene in Arabidopsis is expressed in vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell. 6:1859–1876; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, T. A.; Reynolds, T. L. Transient expression of the uidA gene in pollen embryoids of wheat following microprojectile bombardment. Plant Sci. 104:81–91; 1994.

    Article  CAS  Google Scholar 

  • Lowe, K.; Ross, M.; Bond, D.; Gordon-Kamm, B. Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13:677–682; 1995.

    Article  CAS  Google Scholar 

  • Lusardi, M. C.; Neuhaus-Url, G.; Potrykus, I.; Neuhaus, G. An approach towards genetically engineered cell fate mapping in maize using the Le gene as a visible marker: transactivation capacity of Le vectors in differentiated maize cells and microinjection of Le vectors into somatic embryos and shoot apical meristems. Plant J. 5:571–582; 1994.

    PubMed  CAS  Google Scholar 

  • Lyndon, F. L. Shoot apical meristem: its growth and development. Cambridge: Cambridge University Press; 1998:277 pp.

    Google Scholar 

  • Mahalakshmi, A.; Khurana, P. Agrobacterium-mediated gene delivery in various tissues and genotypes of wheat (Triticum aestivum L.). J. Plant Biochem. Biotechnol. 4:55–59; 1995.

    Google Scholar 

  • Manoharan, M.; Dahleen, I. S. Genetic transformation of the commerical barley (Hordeum vulgare L.) cultivar Conlon by particle bombardment of callus. Plant Cell Rep. 21:76–80; 2002.

    Article  CAS  Google Scholar 

  • Maqbool, S.; Zhong, H.; El-Maghraby, Y.; Wang, W.; Ahmad, A.; Chai, B.; Sticklen, M. B. Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression and osmotic tolerance of transgenic lines containing hva1. Theor. Appl. Genet. 105:201–208; 2002.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, D. E.; Martinell, B. J. Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology 11:596–598; 1993.

    Article  Google Scholar 

  • McCabe, D. E.; Swain, W. F.; Martinell, B. J.; Chistou, P. Stable transformation of soybean (Glycine max) by particle bombardment. Bio/Technology 6:923–926; 1988.

    Article  Google Scholar 

  • McDaniel, C. N.; Poethig, R. S. Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175:13–22; 1988.

    Article  Google Scholar 

  • Medford, J. I. Vegetative apical meristems. Plant Cell 4:1029–1039; 1992.

    Article  PubMed  Google Scholar 

  • Mentewab, A.; Letellier, V.; Marque, C.; Sarrafi, A. Use of anthocyanin biosynthesis stimulatory genes as markers for the genetic transformation of haploid embryos and isolated micropores in wheat. Cereal Res. Commun. 27:17–24; 1999.

    CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Murray, L. E.; Elliott, L. G.; Capitant, S. A.; West, J. A.; Hanson, K. K.; Scarafia, L.; Johnston, S.; DeLuca-Flaherty, C.; Nichols, S.; Cunanan, D.; Dietrich, P.S.; Mettler, I. J.; Dewald, S.; Warnick, D. A.; Rhodes, C.; Sinibaldi, R. M.; Brunke, K. Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infection of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11:1559–1564; 1993.

    Google Scholar 

  • Mythili, P. K.; Seetharama, N.; Reddy, V. D. Plant regeneration from embryogenic cell suspension cultures of wild sorghum (Sorghum dimidiatum Stapf.). Plant Cell Rep. 18:424–428; 1999.

    Article  CAS  Google Scholar 

  • Nhut, D. T.; Le, B. V.; Van T. T. Somatic embryogenesis and direct shoot regeneration of rice using thin cell layer culture of apical meristemic tissues. J. Plant Physiol. 157:559–565; 2000.

    CAS  Google Scholar 

  • Nobre, J.; Davey, M. R.; Lazzeri, P. A.; Cannell, M. E. Transformation of barley scutellum protoplasts: regeneration of fertile transgenic plants. Plant Cell Rep. 19:1000–1005; 2000.

    Article  CAS  Google Scholar 

  • National Research Council Report. Bioconfinement of genetically engineered organisms. Washington, DC: The National Academics Press;2004:65–68.

    Google Scholar 

  • O'Connor-Sanchez, A.; Cabrera-Ponce, J. L.; Valdez-Melara, M.; Tellez-Rodriguez, P.; Pons-Hernandez, J. L.; Herrera-Estrella, L. Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep. 21:302–312; 2002.

    Article  CAS  Google Scholar 

  • O'Kennedy, M. M.; Burger, J. T.; Berger, D. K. Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep. 20:721–730; 2001.

    Article  CAS  Google Scholar 

  • Omirulleh, S.; Abraham, M. V.; Golovkin, M.; Stefanov, I.; Karabaev, M. K.; Mustardy, L.; Morocz, S.; Dudits, D. Activity of a chimeric promoter with the doubled CaMV 358 enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol. 21:415–428; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Padua, V. L. M.; Fernandes, L. D.; De-Oliverira, D. E.; Mansur, E. Effects of auxin and light treatments of donor plants on shoot production from indica-type rice (Oryza sativa L.). In Vitro Cell. Dev. Biol. Plant 34:285–288; 1998.

    CAS  Google Scholar 

  • Padua, V. L. M.; Ferreira, R. P.; Meneses, L.; Uchoa, N.; Margis-Pinheiro, M.; Mansur, E. Transformation of Brazilian elite Indica-type rice by electroporation of shoot apex explants. Plant Mol. Biol. Rep. 19:55–64; 2001.

    Google Scholar 

  • Park, S. H.; Pinson, S. R. M.; Smith, R. H. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol. 32:1135–1148; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Perret, S. J.; Valentine, J.; Leggett, J. M.; Morris, P. Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.). J. Plant Physiol. 160:931–934; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Pius, J.; George, L.; Eapen, S.; Rao, P. S. Influence of genotypes and phytohormones on somatic embryogenesis and plant regeneration in finger millet. Proc. Indian Natl Sci. Acad. 60:53–56; 1994.

    Google Scholar 

  • Pons, M. J.; Marfa, V.; Mele, E.; Messeguer, J. Regeneration and genetic transformation of Spanish rice cultivars using mature embryos. Euphytica 114:117–122; 2000.

    Article  Google Scholar 

  • Potrykus, I. Gene transfer to cereals: an assessment. Bio/Technology 8:353–542; 1990.

    Article  Google Scholar 

  • Rasco-Gaunt, S.; Liu, D.; Li, C. P.; Doherty, A.; Hagemann, K.; Riley, A.; Thompson, T.; Brunkan, C.; Mitchell, M.; Lowe, K. Characterization of the expression of a novel constitutive maize promoter in transgenic wheat and maize. Plant Cell Rep. 21:569–576; 2003.

    PubMed  CAS  Google Scholar 

  • Rengel, Z.; Jelaska, S. Somatic embryogenesis and plant regeneration from seedling tissues of Hordeum vulgare. J. Plant Physiol. 124:385–392; 1986.

    CAS  Google Scholar 

  • Rhodes, C. A.; Pierce, D. A.; Mettler, I. J.; Mascarenhas, D.; Detmer, J. J. Genetically transformed maize plants from protoplasts. Science 7:204–207; 1988.

    Article  Google Scholar 

  • Sadasivam, S.; Gallie, D. R. Isolation and transformation of rice aleurone protoplasts. Plant Cell Rep. 13:394–396; 1994.

    CAS  Google Scholar 

  • Sairam, R. V.; Parani, M.; Franklin, G.; Lifeng, Z.; Smith, B.; MacDougall, J.; Wilber, C.; Sheikh, H.; Kashikar, N.; Meeker, K.; Al-Abed, D.; Berry, K.; Vierling, R.; Goldman, S. L. Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 46:323–329; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Sangtong, V.; Moran, D. L.; Chikwamba, R.; Wang, K.; Woodman Clikeman, W.; Long, M. J.; Lee, M.; Scott, M. P. Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theor. Appl. Genet. 105:937–945; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Satish, K.; Kalpana, A.; Kothari, S. L. In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet and crowfoot grass. Curr. Sci. 81:1482–1485; 2001.

    Google Scholar 

  • Sautter, C.; Leduc, N.; Bilang, R.; Iglesias, V. A.; Gisel, A.; Wen, X.; Potrykus, I. Shoot apical meristems as a target for gene transfer by microballistics. Euphytica 85:45–51; 1995.

    Article  CAS  Google Scholar 

  • Sawahel, W. A.; Hassan, A. H. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Lett. 24:721–725; 2002.

    Article  CAS  Google Scholar 

  • Schlappi, M.; Hohn, B. Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4:7–16; 1992.

    Article  PubMed  Google Scholar 

  • Sheen, J.; Hwang, S.; Niwa, Y.; Kobayashi, H.; Galbraith, D. W. Green fluorescent protein as a new vital marker in plant cells. Plant J. 8:777–784; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Shen, S. H.; Zhang, X. J.; Guo, Y. M.; Jing, Y. X. Microinjection of genes into in vitro ovaries of maize and identification of transformed plants. Acta Bot. Sin. 43:1055–1057; 2001.

    CAS  Google Scholar 

  • Sidorenko, L.; Li, X.; Tagliani, L.; Bowen, B.; Peterson, T. Characterization of the regulatory elements of the maize P-rr gene by transient expression assays. Plant Mol. Biol. 39:11–19; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, J. A. Mitotic activity in wheat shoot apical meristems: effect of dissection to expose the apical dome. Plant Sci. 130:217–225; 1997.

    Article  CAS  Google Scholar 

  • Simmonds, J.; Stewart, P.; Simmonds, D. Regeneration of Triticum aestivum apical explants after microinjection of germ line progenitor cells with DNA. Physiol. Plant. 95:197–206; 1992.

    Article  Google Scholar 

  • Smith, R. H.; Murashige, T. In vitro development of the isolated shoot apical meristem of angiosperms. Am. J. Bot. 57:562–568; 1970.

    Article  Google Scholar 

  • Somers, D. A.; Rines, H. W.; Gu, W.; Kaeppler, H. F.; Bushnell, W. R. Fertile, transgenic oat plants. Bio/Technology 10:1589–1594; 1992.

    Article  CAS  Google Scholar 

  • Song, P.; Cai, C. Q.; Skokut, M.; Kosegi, B. D.; Petolino, J. F. Quantitative real-time PCR as a screening tool for estimating transgene copy number in whiskers-derived transgenic maize. Plant Cell Rep. 20:948–954; 2002.

    Article  CAS  Google Scholar 

  • Songstad, D. D.; Armstrong, C. L.; Petersen, W. L.; Hairston, B.; Hinchee, M. A. W. Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell. Dev. Biol. Plant 32:179–183; 1996.

    Google Scholar 

  • Tadesse, Y.; Sagi, L.; Swennen, R.; Jacobs, M. Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tiss. Organ Cult. 75:1–18; 2003.

    Article  CAS  Google Scholar 

  • Takumi, S.; Shimada, T. Effects of three promoters on stable integration of the herbicide resistance gene in wheat culture cells through particle bombardment. Bull RIAR Ishikawa Agric. Coll. 4:9–16; 1995.

    Google Scholar 

  • Torbert, K. A.; Rines, H. W.; Somers, D. A. Transformation of oat using mature embryo-derived tissue cultures. Crop Sci. 38:226–231; 1998.

    Google Scholar 

  • Toyoda, H.; Yamaga, T.; Matsuda, Y.; Ouchi, S. Transient expression of the β-glucuronidase gene introduced into barley coleoptile cells by microinjection. Plant Cell Rep. 9:299–302; 1990.

    Article  CAS  Google Scholar 

  • Vain, P.; McMullen, M. D.; Finer, J. J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12:84–88; 1993.

    Article  Google Scholar 

  • Vasil, I. K. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128:193–218; 1987.

    Google Scholar 

  • Vasil, V.; Srivastava, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11:1553–1558; 1993.

    Google Scholar 

  • Vitanova, Z.; Vitanov, V.; Trifonova, A.; Savova, D.; Atanassov, A. Effect of 2.4-D precultivation on regeneration capacity of cultivated barley. Plant Cell Rep. 14:437–441; 1995.

    Article  CAS  Google Scholar 

  • Walden, D. B.; Greyson, R. I.; Bommineni, V.R.; Pareddy, D. R.; Sanchez, J. P.; Banasikowska, E.; Kudirka, D. T. Maize meristem culture and recovery of mature plants. Maydica 34:263–275; 1989.

    Google Scholar 

  • Walters, D. A.; Vetsch, C. S.; Potts, D. E.; Lundquist, R. C. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 18:189–200; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Y.; Lemaux, P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Wang, J. X.; Sun, Y.; Cui-Gui, M.; Hu, J. J. Transgenic maize plants obtained by pollen-mediated transformation. Acta Bot. Sin. 43:275–279; 2001.

    CAS  Google Scholar 

  • Wernicke, W.; Milkovits, L. The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid. Protoplasma 131:131–141; 1986.

    Article  CAS  Google Scholar 

  • Wright, M.; Dawson, J.; Dunder, E.; Suttie, J.; Reed, J.; Kramer, C.; Chang, Y.; Novitzky, R.; Wang, H.; Artim, L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 20:429–436; 2001.

    Article  CAS  Google Scholar 

  • Wu, H.; Sparks, C.; Amoah, B.; Jones, H. D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep. 21:659–668; 2003.

    PubMed  CAS  Google Scholar 

  • Yao, Q. A.; Simion, E.; William, M.; Krochko, J.; Kasha, K. Biolistic transformation of haploid isolated microspores of barley. Genome 40:570–581; 1997.

    Google Scholar 

  • Zhang, S.; Cho, M. J.; Koprek, T.; Yun, R.; Bregitzer, P.; Lemaux, P. G. Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep. 18:959–966; 1999.

    Article  CAS  Google Scholar 

  • Zhang, S.; Warkentin, D.; Sun, B.; Zhong, H.; Sticklen, M. B. Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor. Appl. Genet. 92:752–761; 1996a.

    Article  CAS  Google Scholar 

  • Zhang, S.; Williams Carrier, R.; Jackson, D.; Lemaux, P. G. Expression of CDC2Zm and KNOTTED1 during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barley (Hordeum vulgare L.) Planta 204:542–549; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S.; Williams Carrier, R.; Lemaux, P. G. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep. 21:263–270; 2002.

    Article  CAS  Google Scholar 

  • Zhang, S.; Zhong, H.; Sticklen, M. B. Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.) J. Plant Physiol. 148:667–671; 1996b.

    CAS  Google Scholar 

  • Zhang, Y.; Darlington, H.; Jones, H. D.; Halford, N. G.; Napier, J. A.; Davey, M. R.; Lazzeri, P. A.; Shewry, P. R. Expression of the gamma-zein protein of maize in seeds of transgenic barley: effects on grain composition and properties. Theor. Appl. Genet. 106:1139–1146; 2003.

    PubMed  CAS  Google Scholar 

  • Zhao, Z. Y.; Cai, T. S.; Miller, M.; Wang, N.; Pang, H.; Rudert, M.; Schroeder, S.; Hondred, D.; Seltzer, J.; Pierce, D. Agrobacterium-mediated sorghum transformation. Plant. Mol. Biol. 44:789–798; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z. Y.; Gu, W. N.; Cai, T. S.; Tagliani, L.; Hondred, D.; Bond, D.; Schroeder, S.; Rudert, M.; Pierce, D. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed. 8:323–333; 2001.

    Article  CAS  Google Scholar 

  • Zhong, H.; Srinivasan, C.; Sticklen, M. B. Morphogenesis of corn (Zea mays L.) in vitro I. Formation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187:490–497; 1992a.

    CAS  Google Scholar 

  • Zhong, H.; Srinivasan, C.; Sticklen, M. B. Morphogenesis of corn (Zea mays L.) in vitro II. Transdifferentiation of shoots, tassels, and ear primordia from corn shoot tips. Planta 187:483–489; 1992b.

    CAS  Google Scholar 

  • Zhong, H.; Sun, B.; Warkentin, D.; Zhang, S.; Wu, R.; Wu, T. Y.; Sticklen, M. B. The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol. 110:1097–1107; 1996b.

    PubMed  CAS  Google Scholar 

  • Zhong, H.; Teymouri, F.; Chapman, B.; Maqbool, S.; Sabzikar, R.; El-Maghraby, Y.; Dale, B.; Sticklen, M. B. The dicot pea (Pisum sativum L.) rbcS transit peptide directs the Alcaligenes eutrophus polyhydroxybutyrate enzymes into the monocot maize (Zea mays L.) chloroplasts. Plant Sci. 165:455–462; 2003.

    Article  CAS  Google Scholar 

  • Zhong, H.; Wang, W.; Sticklen, M. B. In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices. J. Plant Physiol. 153:719–726; 1998.

    CAS  Google Scholar 

  • Zhong, H.; Zhang, S.; Warkentin, D.; Sun, B.; Wu, T.; Sticklen, M. B. Analysis of the functional activity of the 1.4-kb 5′-region of the rice actin 1 gene in stable transgenic plants of maize (Zea mays L.). Plant Sci. 116:73–84; 1996a.

    Article  CAS  Google Scholar 

  • Zhu, H.; Jeoung, J. M.; Liang, G. H.; Muthukrishnan, S.; Krishnaveni, S.; Wilde, G. Biolistic transformation of sorghum using a rice chitinase gene [Sorghum bicolor (L.) Moench—Oryza sativa L.]. J. Genet. Breed. 52:243–252; 1998.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam B. Sticklen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sticklen, M.B., Oraby, H.F. Shoot apical meristem: A sustainable explant for genetic transformation of cereal crops. In Vitro Cell.Dev.Biol.-Plant 41, 187–200 (2005). https://doi.org/10.1079/IVP2004616

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004616

Key words

Navigation