Skip to main content
Log in

Somatic embryogenesis in conifers: The role of carbohydrate metabolism

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Somatic embryogenesis represents a promising tool for mass propagation of elite genotypes of conifers. The efficiency of the technique strongly depends on cultivation conditions, with the exogenous saccharide supply being one of the most important factors. Different types and concentrations of saccharides have been empirically evaluated with respect to production of acceptable numbers and quality of somatic embryos for particular conifer species. Only a few recently published papers have focused on deeper studies of carbohydrate metabolism, enabling insight into the physiological background of the crucial effects of carbohydrates. Generally, saccharides are known to serve as carbon and energy sources, osmotic agents, stress protectants, and signal molecules in plants. This review collects and critically discusses the experimental data on exogenous saccharide supplies, resulting endogenous levels, and key enzyme activities obtained from the most thoroughly described genus Picea. In conclusion, it stresses the necessily to broaden the studies and consider the unltiple roles of saccharides during conifer somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attree, S. M.; Fowke, L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss. Organ Cult. 35:1–35; 1993.

    Article  CAS  Google Scholar 

  • Attree, S. M.; Moore, D.; Sawhney, V. K.; Fowke, L. C. Enhanced maturation and desiccation tolerance of white spruce (Picea glauca (Moench.) Voss) somatic embryos: effects of a nonplasmolysing water stress and abscisic acid. Ann. Bot. 68:519–525; 1991.

    Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Manipilation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 137:395–404; 1992.

    Google Scholar 

  • Attree, S. M.; Pomeroy, M. K.; Fowke, L. C. Development of white spruce (Picea glauca (Mocneh.) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46:433–439; 1995.

    Article  CAS  Google Scholar 

  • Bachmann, M.; Inan, C.; Keller, F. Raffinose oligosaccharide storage carbon partitioning and source-sink interaction in plants. In: Madore, M.; Lucas, M. J., eds. Carbon partitioning and source-sink interactions in plants. Rockville, MD: American Society of Plant Physiologists: 1995:215–225.

    Google Scholar 

  • Bercetche, J.; Galerne, M.; Dereuddre, J. Efficient regeneration of plantlets from embryogenic callus of Picea abies (L.) Karst after freezing in liquid nitrogen. C. R. Acad. Sci. Ser. 3, 310:357–363; 1990.

    Google Scholar 

  • Black, M.; Corbineau, F.; Gee, H.; Côme, D. Water content, raffimose, and dehydrins in the induction of desiccation tolerance in immature wheat embryos. Plant Physiol. 120:463–471; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Blane, G.; Lardet, L.; Martin, A.; Jacob, J. L.; Carron, M. P. Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Mull. Arg.) J. Exp. Bot. 53:1453–1462; 2000.

    Article  Google Scholar 

  • Bomal, C.; Le, V. Q.; Tremblay, F. M. Induction of tolerance to fast desiccation in black spruce (Picea mariana) somatic embryos: relationship between partial water loss, sugars, and dehydrins. Physiol. Plant. 115:523–530; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bomal, C.; Tremblay, F. M. Effect of desiccation to low moisture content on germination, synchronization of root emergence, and plantlet regeneration of black spruce somatic embryos. Plant Cell Tiss. Organ Cult. 56:193–200; 1999.

    Article  Google Scholar 

  • Borisjuk, L.; Walenta, S.; Weber, H.; Mueller-Klieser, W.; Wobus, U. High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J. 15:583–591; 1998.

    Article  CAS  Google Scholar 

  • Bozhkov, P. V.; Filonova, L. H.; von Arnold, S. A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol. Bioengng. 77:658–667; 2002.

    Article  CAS  Google Scholar 

  • Bozhkov, P. V.; von Arnold, S. Polyethylene glycol promotes maturation but inhibits further growth of Picea abies somatic embryos. Physiol. Plant. 104:211–224; 1998.

    Article  CAS  Google Scholar 

  • Brenac, P.; Horhowicz, M.; Downer, S. M.; Dickerman, A. M.; Smith, M. E.; Obendorf, R. L. Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. J. Plant Physiol. 150:481–488; 1997.

    CAS  Google Scholar 

  • Caffrey, M.; Fonseca, V.; Leopold, A. C. Lipid-sugar interactions—relevance to anhydrous biology. Plant Physiol. 86:754–758; 1988.

    PubMed  CAS  Google Scholar 

  • Cram, W. J. Mannitol transport and suitability as an osmoticum in root cells. Plant Physiol. 61:396–404; 1984.

    Article  CAS  Google Scholar 

  • Crowe, J. H.; Hockstra, F. A.; Crowe, L. M. Anhydrobiosis Annu. Rev. Physiol. 54:597–599; 1992.

    Article  Google Scholar 

  • Downie, B.; Bewley, J. D. Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiol. Plant. 110:1–12; 2000.

    Article  CAS  Google Scholar 

  • Feirer, R. P.; Conkey, J. H.; Verhagen, S. A. Triglycerides in embryogenic conifer calli: a comparison with zygotic embryos. Plant Cell Rep. 8:207–209; 1989.

    Article  CAS  Google Scholar 

  • Find, J. I. Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci. 128:75–83; 1997.

    Article  CAS  Google Scholar 

  • Finer, J. J.; Kriebel, H. B.; Beewar, M. R. Initition of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep. 8:203–206; 1989.

    Article  Google Scholar 

  • George, E. F. Plant Propagation by Tissue Culture. Part 1: The technology. Edington, Wilts: Exegetics Ltd.; 1993:322–326.

    Google Scholar 

  • Giovannoni, J. Molccular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:725–749; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gorbatenko, O.; Hakman, I. Desiccation-tolcrant somatic embryos of Norway spruce (Picea abies) can be produced in liquid cultures and regenerated into plantlets. Int. J. Plant Sci. 162:1211–1218; 2001.

    Article  Google Scholar 

  • Gösslová, M.; Svobodová, H.; Lipavská, H.; Albrechtová, J.; Vreugdenhil, D. Comparing carbohydrate status during Norway spruce seed development and somatic embryo formation. In Vitro Cell. Dev. Biol. Plant 37:20–28; 2001.

    Google Scholar 

  • Grigová, M.; Konrádová-Svobodová, H.; Albrechtová, J.; Flieger, M.; Řezank, T.; Lipavská, H. Accumulation of storage lipids during maturation of Norway spruce (Picea abies) somatic embryos. Book of abstracts ‘IXth Days of Plant Physiology’, Ĉeské Budêjovice, Czech Republic, September 17–21: 2001:73.

  • Gupta, P. K.; Grob, J. A. Somatic embryogenesis in conifers. In: Jain, S.; Gupta, P.; Newton, R., eds. Somatic embryogenesis in woody plants, vol. 1. Dordrecht: Kluwer Academic Publishers: 1995:81–98.

    Google Scholar 

  • Hakman, I. Embryology in Norway spruce (Picea abies). An analysis of the composition of seed storage proteins and deposition of storage reserves during seed development and somatic embryogenesis. Physiol. Plant. 87:148–159; 1993.

    Article  CAS  Google Scholar 

  • Hoekstra, F. A.; Golovina, E. A. Membrane behaviour during dehydration: implications for desiccation tolerance. Russ. J. Plant Physiol. 46:295–306; 1999.

    CAS  Google Scholar 

  • Iraqi, D.; Tremblay, F. M. The role of sucrose during maturation of black spruce (Picea mariana (Mill.) BSP) and white spruce (Picea glauca (Moench) Voss) somatic embryos. Physiol. Plant. 111:381–388; 2001a.

    Article  PubMed  CAS  Google Scholar 

  • Iraqi, D.; Tremblay, F. M. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J. Exp. Bot. 52:2301–2311; 2001b.

    Article  PubMed  CAS  Google Scholar 

  • Keller, F.; Ludlow, M. M. Carbohydrate-metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). J. Exp. Bot. 44:1351–1359; 1993.

    Article  CAS  Google Scholar 

  • Koch, K. E. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47:509–540; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K. E.; Nolte, K. D. Sugar modulated expression of genes for sucrose metabolism and their relationship to transport pathways. In: Madore, M. A.; Lucas, W. J., eds. Carbon partitioning and source-sink interactions in plants. Rockville, MD: American Society of Plant Physiologists; 1995:141–155.

    Google Scholar 

  • Koch, K. E.; Zeng, Y. Molecular approaches to altered C partitioning: genes for sucrose metabolism. J. Am. Soc. Hort. Sci. 127:474–483; 2002.

    CAS  Google Scholar 

  • Kong, L.; Yeung, E. C. Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol. Plant. 93:298–304; 1995.

    Article  CAS  Google Scholar 

  • Konrádová, H.; Grigová, M.; Lipavská, H. Cold induced accumulation of raffinose family oligosaccharides in somatic embryos of Norway spruce (Picea abies). In Vitro Cell. Dev. Biol. Plant 39:425–427; 2003.

    Article  CAS  Google Scholar 

  • Konrádová, H.; Lipavská, H.; Albrechtová, J.; Vreugdenhil, D. Sucrose metabolism during somatic and zygotic embryogeneses in Norway spruce: content of soluble saccharides and localisation of key enzyme activities. J. Plant Physiol. 159:387–396; 2002a.

    Article  Google Scholar 

  • Konrádová, H.; Lipavská, H.; Hudec, L.; Grigová, M.; Ulrychová, A.; Řezanka, T. Somatic embryogenesis of Norway spruce: is polyethylene glycol helper or wrecker? 13th Congress of the Federation of European Societies of Plant Physiology, Hersonissos, Grete, Greece, September 2–6; 2002b:720.

  • Koster, K. L.; Leopold, A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 88:829–832; 1988.

    PubMed  CAS  Google Scholar 

  • Kumstýřová, L.; Vágner, M.; Lipavská, H.; Gösslová, M. Somatic embryogenesis of Norway spruce: anatomical characterization and content of non-structural saccharides. Plant Physiol. Biochem. 38(Suppl.):43; 2000.

    Google Scholar 

  • Leifert, C.; Murphy, K. P.; Lumsden, P. J. Mineral and carbohydrate nutrition of plant-cell and tissue-cultures. Crit. Rev. Plant Sci. 14:83–109; 1995.

    CAS  Google Scholar 

  • Lin, T.-P.; Huang, N.-H. The relationship between carbohydrate composition of some tree seeds and their longevity. J. Exp. Bot. 45:1289–1294; 1994.

    Article  CAS  Google Scholar 

  • Lipavská, H.; Svobodová, H.; Albrechtová, J. Annual dynamics of the content of non-structural saccharides in the context of structural development of vegetative buds of Norway spruce. J. Plant Physiol. 157:365–373; 2000a.

    Google Scholar 

  • Lipavská, H.; Svobodová, H.; Albrechtová, J.; Kumstýřová, L.; Vágner, M.; Vondráková, Z. Somatic embryogenesis in Norway spruce: carbohydrate status during embryo maturation and the effect of polychylene glycol treatment. In Vitro Cell. Dev. Biol. Plant 36:260–267; 2000b.

    Article  Google Scholar 

  • Lipavská, H.; Vreugdenhil, D. Uptake of mannitol from the media by in vitro grown plants. Plant Cell Tiss. Organ Cult. 45:103–107; 1996.

    Article  Google Scholar 

  • Liu, J. J. J.; Krenz, D. G.; Galvez, A. F.; de Lumen, B. O. Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci. 134:11–20; 1998.

    Article  CAS  Google Scholar 

  • Lu, C. Y.; Thorpe, T. A. Somatic embryogenesis and plantlet regeneration in cultured immature embryos of Picea glanca. J. Plant Physiol. 128:297–302; 1987.

    CAS  Google Scholar 

  • Lux, D.; Leonardi, S.; Muller, J.; Wiemken, A.; Fluckiger, W. Effects of ambient ozone concentrations on contents of non-structural earbohydrates in young Picea abies and Fagus sylvatica. New Phytol. 137:399–409; 1997.

    Article  CAS  Google Scholar 

  • Mehouachi, J.; Tadeo, F. R.; Zaragoza, S.; Primo-Millo, E.; Talon, M. Effects of gibberellic acid and paclobutrazol on growth and carbohydrate accumulation in shoots and roots of citrus rootstock seedlings. J. Hort. Sci. 71:747–754; 1996.

    CAS  Google Scholar 

  • Nørgaard, J. V. Somatic embryo maturation and plant regeneration in Abies nordmandianu Lk. Plant Sci. 124:211–221; 1997.

    Article  Google Scholar 

  • Obendorf, R. L. Oligosaccharides and galactosyl cyelitols in seed desiccation tolerance. Seed Sci. Res. 7:63–74; 1997.

    CAS  Google Scholar 

  • Oliver, A. E.; Crowe, L. M.; Crowe, J. H. Methods for dehydration-tolerance: depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Sci. Res. 8:211–221; 1998.

    CAS  Google Scholar 

  • Pien, S.; Wyrzykowska, J.; Fleming, A. J. Novel marker genes for early leaf development indicate spatial regulation of carbohydrate metabolism within the apical meristem. Plant J. 35:663–674; 2001.

    Article  Google Scholar 

  • Pollock, C. J.; Kingston-Smith, A. H. The vacuole and carbohydrate metabolism. Adv. Bot. Res. 25:195–215; 1997.

    Article  CAS  Google Scholar 

  • Pond, S. E.; von Aderkas, P.; Bonga, J. M. Improving tolerance of somatic embryos of Picea glauca to flash desiccation with a cold treatment (desiccation after cold acclimation). In Vitro Cell. Dev. Biol. Plant 38:334–341; 2002.

    Google Scholar 

  • Riou-Khamlichi, C.; Menges, M.; Healy, J. M. S.; Murray, J. A. H. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cell. Biol. 20:4513–4521; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D. R.; Lazaroff, W. R.; Webster, F. B. Interaction between maturation and high relative humidity treatments and their effects on germination of Sitka spruce somatic embryos. J. Plant Physiol. 138:1–6; 1991.

    Google Scholar 

  • Roberts, D. R.; Sutton, C. S.; Flinn, B. S. Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humility. Can. J. Bot. 68:1086–1090; 1990.

    Google Scholar 

  • Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signalling in plants. Plant Cell. 14:S185-S205; 2002.

    PubMed  CAS  Google Scholar 

  • Rook, F.; Bevan, M. W. Genetic approaches to understanding sugar-response pathways. J. Exp. Bot. 54:495–501; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Salajová, T.; Salaj, J. Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J. Plant Physiol. 158:747–755; 2001.

    Article  Google Scholar 

  • Schuller, A.; Reuther, G. Response of Abies alba embryonal-suspensor mass to various carbohydrate treatments. Plant Cell Rep. 12:199–202; 1993.

    Article  CAS  Google Scholar 

  • Scott, P.; Lyne, R. L.; ap Rees, T. Metabolism of maltose and sucrose by microspores isolated from barley (Hordeum vulgare L.). Planta 197:435–441; 1995.

    Article  CAS  Google Scholar 

  • Stasolla, C.; Kong, L. S.; Yeung, E. C.; Thorpe, T. A. Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol. Plant 38:93–105; 2002.

    Article  CAS  Google Scholar 

  • Stasolla, C.; van Zyl, L.; Egertsdotter, U.; Craig, D.; Liu, W. B.; Sederoff, R. R. The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol. 131:49–60; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Steinitz, B. Sugar alcohols display nonosmotic roles in regulating morphogenesis and metabolism in plants that do not produce polyols as primary photosynthetic products. J. Plant Physiol. 155:1–8; 1999.

    CAS  Google Scholar 

  • Stone, S. L.; Gifford, D. J. Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early seedling growth. II. Storage triacylglycerols and carbohydrates. Int. J. Plant Sci. 160:663–671; 1999.

    Article  CAS  Google Scholar 

  • Sturm A.; Tang, G.-Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4:401–407; 1999.

    Article  PubMed  Google Scholar 

  • Sung, S. S.; Xu, D.; Black, C. C. Identification of actively filling sucrose sinks. Plant Physiol. 89:1117–1121; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Svobodová, H.; Albrechtová, J.; Kumstýřová, L.; Lipavská, H.; Vágner, M.; Vondráková, Z. Somatic embryogenesis in Norway spruce: anatomical study of embryo development and influence of polyethylene glycol on maturation process. Plant Physiol. Biochem. 37:209–221; 1999.

    Article  Google Scholar 

  • Swedlund, B.; Locy, R. D. Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiol. 103:1339–1346; 1993.

    PubMed  CAS  Google Scholar 

  • Taber, R. P.; Zhang, C.; Hu, W.-S. Kinetics of Douglas-fir (Pseudotsuga menziesii) somatic embryo development. Can. J. Bot. 76:863–871; 1998.

    Article  CAS  Google Scholar 

  • Thompson, M. R.; Douglas, T. J.; Obata-Sasamoto, H.; Thorpe, T. A. Mannitol metabolism in cultured plant cells. Physiol. Plant. 67:365–369; 1986.

    Article  CAS  Google Scholar 

  • Timmis, R. Bioprocessing for tree production in the forest industry: conifer somatic embryogenosis. Biotechnol. Progr. 14:156–166; 1998.

    Article  CAS  Google Scholar 

  • Treat, W. J.; Engler, C. R.; Soltes, E. J. Culture of photomixotropic soybean and pine in a modified fermentor using a novel impeller. Biotechnol. Biocngng. 34:1191–1202; 1989.

    Article  CAS  Google Scholar 

  • Tremblay, L.; Tremblay, F. M. Carbohydrate requirements for the development of black spruce (Picea mariana (Mill.) B.S.P.) and red spruce (P. rubens Sarg.) somatic embryos. Plant Cell Tiss. Organ Cult. 27:95–103; 1991.

    Article  CAS  Google Scholar 

  • Tremblay, L.; Tremblay, F. M. Maturation of black spruce somatic embryos: Sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tiss. Organ Cult. 42:39–46; 1995.

    Article  CAS  Google Scholar 

  • von Arnold, S.; Egertsdotter, U.; Ekberg, I.; Cupta, P. K.; Mo, H.; Nørgaard, J. Somatic embryogenesis in Norway spruce (Picea abies). In: Jain, S.; Gupta, P.; Newtoh, R., eds. Somatic embryogenesis in woody plants, vol. 3. Dordrecht: Kluwer Academic Publishers; 1995:17–36.

    Google Scholar 

  • Weber, L.; Borisjuk, L., Wobus, U. Sugar import and metabolism during seed development. Trends Plant Sci. 2:169–174; 1997.

    Article  Google Scholar 

  • Zeng, Y.; Wu, Y.; Avigne, W. T.; Koch K. E. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signalling potential, and scedling survival. Plant Physiol. 121:599–608; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Lipavská.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipavská, H., Konrádová, H. Somatic embryogenesis in conifers: The role of carbohydrate metabolism. In Vitro Cell.Dev.Biol.-Plant 40, 23–30 (2004). https://doi.org/10.1079/IVP2003482

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003482

Key words

Navigation