Skip to main content
Log in

Characterization of ploidy levels of wheat microspore-derived plants using laser flow cytometry

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The purpose of this study was to determine simply and accurately ploidy levels as estimated by changes in nuclear DNA content of wheat (Triticum aestivum L.) plants regenerated from microspore-derived embryos. Using flow cytometry, the nuclear DNA content of green (83) and albino (222) plants derived using anther culture of ‘Bobwhite’ and ‘Pavon 76’, and of their reciprocal F1 hydrids was estimated. The average DNA concent of the Bobwhite and Pavon 76 standards was 32.46 and 31.28 per nucleus, respectively. Microspore-derived haploid (3X), doubled-haploid (6X), nanoploid (9X), and dodecaploid (12X) plants contained on average 15.44, 30.56, 45.57, and 60.27 pg of DNA, respectively, at a ratio of 1∶1.98∶2.99∶3.90. The frequency of haploids (43.6%) was similar to that of doubled haploids (43.0%), and much larger than the frequency of endopolyploids [nanoploid (1.3%) and dodecaploid (1.0%)] and various aneuploids (11.1%). In terms of genetic stability, green plants had less chromosomal variation than albino plants. The procedure is suitable for rapid determination of the ploidy levels of wheat microspore-derived plants. The knowledge about DNA content or genome size of plants obtained here provides useful information to plant breeders and geneticists interested in using anther culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arumuganathan, K.; Earle, E. D.. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208–218; 1991a.

    CAS  Google Scholar 

  • Arumuganathan, K.; Earle, E. D.. Estimation of nclear DNA contents of plants by flow cytometry. Plant Mol. Biol. Rep. 9:229–241; 1991b.

    CAS  Google Scholar 

  • Aubry, C.; De Buyser, J.; Hartmann, C.; Henry, Y.; Rode, A.. Changes in the molecular organization of mitochondrial genome in albino tissue cultures derived from wheat pollen embryos and in plants regenerated from tissue culture. Plant Sci. 65:103–110; 1989.

    Article  CAS  Google Scholar 

  • Barnabas, B.; Pfahler, P. L.; Kovacs, D., Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L). Theor. Appl. Genet. 81:675–678; 1991.

    Article  CAS  Google Scholar 

  • Bennett, M. D.; Smith, J. B.. Nuclear DNA amount in angiosperms. Phil. Trans. Royal Soc. London 274:227–274; 1976.

    CAS  Google Scholar 

  • Berlyn, G. P.; Berlyn, M. K. B.; Beck, R. C.. A comparison of internal standards for plant cytometry. Stain Tech. 61:297–302; 1986.

    CAS  Google Scholar 

  • Bullock, W. P.; Baenziger, P. S.; Schaffer, G. W.; Bottino, P. J.. Anther culture of wheat (Triticum aestivum L.) F's1 and their reciprocal crosses. Theor. Appl. Genet. 62:155–159; 1982.

    Article  Google Scholar 

  • Compton, M. E.. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss. Organ Cult. 37:217–242; 1994.

    Google Scholar 

  • Day, A.; Ellis, T. H. N.. Chloroplast DNA delections associated with wheat plants regenerated from pollen. Possible basis for maternal inheritance of chloroplasts. Cell 30:359–368; 1984.

    Article  Google Scholar 

  • Day, A.; Ellis, T. H. N.. Deleted froms of plastid, DNA in albino plants from cereal anther culture. Curr. Genet. 9:671–678; 1985.

    Article  CAS  Google Scholar 

  • De Buyser, J.; Henry, Y.; Hespel, A.. Utilisation de l'androgenése in vitro dans des programmes de seléction du Blé tendre (Triticum aestivum L.). Z. Pflanzenzücht. 87:290–299; 1981.

    Google Scholar 

  • Dhillon, S. S.; Berlyn, G. P.; Miksche, J. P.. Requirement of an internal standard for microspectrophotometric measurement of DNA. Am. J. Bot. 64:117–121; 1977.

    Article  CAS  Google Scholar 

  • Endo, T. R.; Gill, B. S.. Sothatic karyotype, heterochromtin distribution, and nature of chromosome differentiation in common wheat, Triticum aestivum. L. em Thell. Chromosoma 89:361–369; 1984.

    Article  Google Scholar 

  • Galbraith, D. W.; Harkins, K. R.; Maddox, J. M.; Ayres, N. M.; Sharma, D. P.; Firoozbady, E.. Rapid flow cytometric analysis of cell cycle in intact plant tissue. Science 220:1049–1051; 1983.

    Article  CAS  PubMed  Google Scholar 

  • Hu, H.. Variability and gametic expression in pollen-derived plants in wheat. In: Hu, H.; Yang, H., eds. Haploids of higher plants in vitro. New York, Springer; 1986:67–78.

    Google Scholar 

  • Hyne, V.; Kearsey, M. J.; Martinez, O. Gang, W.; Snape, J. W.. A partial genome assay for quantitative trait loci in wheat (Triticum aesticum) using different analytical techniques. Theor. Appl. Genet. 89:735–741; 1994.

    Article  CAS  Google Scholar 

  • Ingram, H. M.; Power, J. B.; Lowe, K. C.; Davey, M. R.. Microspore-derived embryo induction form cultured anthers of wheat. Plant Cell Tiss. Organ Cult. 60:235–238; 2000.

    Article  Google Scholar 

  • Khush, G. S.; Virmani, S. S. Haploids in plant breeding. In: Jain, S. M.; Sopory, S. K.; Veilleux, R. E., eds In vitro haploid production in higher plants. Dordrecht: Kluwer Academic Publishers: 1996:11–33.

    Google Scholar 

  • Liang, G. H.; Xu, A.; Hoang, T.. Direct generation of wheat haploids via anther culture. Crop Sci. 27:336–339; 1987.

    Article  Google Scholar 

  • Liu, W.; Zheng, M. Y.; Polle, E. A.; Konzak, C. F.. Highly efficient doubledhaploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci. 42:686–692; 2002.

    Article  Google Scholar 

  • Masojc, P.; Lukow, O. M.; McKenzie, R. I. H.; Howes, N. K.. Responsiveness to anther culture in cultivars and F1 crosses of spring wheat. Can. J. Plant Sci. 73:777–783; 1993.

    Google Scholar 

  • Matzk, F.; Mahn, A.: Improved techniques for haploid production in wheat using chromosome climination. Plant Breed. 113:125–129; 1994.

    Article  Google Scholar 

  • Michaelson, M. J.; Price, H. J.; Johnson, J. S.; Ellison, J. R.. Variation of nuclear DNA content in Helianthus annuus (Asteraceae). Am. J. Bot. 78:1238–1243; 1991.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F.. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Navarro-Alvarez, W.; Baenziger, P. S.; Eskridge, K. M. Hugo, M.; Gustafson, V. D.. Addition of colchicine to wheat anther culture media to increase doubled haploid plant production. Plant Breed. 112:192–198; 1994.

    Article  CAS  Google Scholar 

  • O'Brien, I. E. W.; Smith, D. R.; Gardner, R. C.; Murray, B. G.. Flow cytometric determination of genome size in Pinus. Plant Sci. 115:91–99; 1996.

    Article  Google Scholar 

  • Picard, E.; Rode, A.; Doussianult, G.; Rousset, M.; Rives, M.. Wheat (Triticum aestivum): in vitro production and utilization of doubled haploids. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry 12: Haploids in crop improvement I., Berlin: Springer-Verlag; 1990:101–124.

    Google Scholar 

  • Simonson, R. L.; Baenziger, P. S.. The effects of gelling agents on wheat anther culture and immature embryo culture. Plant Breed. 109:211–217; 1992.

    Article  Google Scholar 

  • Tixier, M. H.; Sourdille, P.; Chardet, G.; Gay, G.; Jaby, C.; Cadalen, T.; Bernard, S.; Nicolas, P.; Bernard M.. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor. Appl. Genet. 97:1076–1082; 1998.

    Article  CAS  Google Scholar 

  • Tuvesson, I. K. D.; Perdersen, S.; Anderson, S. B.. Nuclear genes affecting albinism in wheat (Triticum aestivum L.). Theor. Appl. Genet. 78:879–883; 1989.

    Article  Google Scholar 

  • Wakamiya, I.; Newton, R. J.; Johnston, J. S.; Price, H. J.. Genome size and environmental factors in the genus Pinus. Am. J. Bot. 80:1235–1241; 1993.

    Article  Google Scholar 

  • Wan, Y.; Lemaux, P. G.. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Zhang, J.; Friebe, B.; Raupp, W. J.; Harrison, S. A.; Gill, B. S.. Wheat embryogenesis and haploid production in wheat-maize hybrids. Euphytica 90:315–324; 1996.

    Article  Google Scholar 

  • Zhou, H.; Konzak, C. F.. Improvement of anther culture methods for haploid production in wheat, (T. aestivum L.). Crop Sci. 29:817–821; 1991.

    Article  Google Scholar 

  • Ziegler, G.; Dressler, K.; Hess, D.. Investigations on the anther culturability of four German spring wheat cultivars and the influence of light on regeneration of green vs. albino plants. Plant Breed. 105:40–46; 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Stephen Baenziger.

Additional information

Formerly of the Department of Agronomy, University of Nebraska, Lincoln. NE 68583-0915.

Formerly of the Center for Biotechnology, University of Nebraska, Lincoln, NE 68588.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KM., Baenziger, P.S., Rybczynski, J.J. et al. Characterization of ploidy levels of wheat microspore-derived plants using laser flow cytometry. In Vitro Cell Dev Biol -Plant 39, 663–668 (2003). https://doi.org/10.1079/IVP2003464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003464

Key words

Navigation