Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-10T10:27:51.023Z Has data issue: false hasContentIssue false

Stimulatory effect of insulin on ruminal epithelium cell mitosis in adult sheep

Published online by Cambridge University Press:  09 March 2007

T. Sakata
Affiliation:
Department of Animal Science, Faculty of Agriculture, Tohoku University, 980 Sendai, Japan
K. Hikosaka
Affiliation:
Department of Animal Science, Faculty of Agriculture, Tohoku University, 980 Sendai, Japan
Yoko Shiomura
Affiliation:
Department of Animal Science, Faculty of Agriculture, Tohoku University, 980 Sendai, Japan
H. Tamate
Affiliation:
Department of Animal Science, Faculty of Agriculture, Tohoku University, 980 Sendai, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The rumen adapts to increased food intake by the hyperplasia of epithelial cells.

2. Volatile fatty acids (VFA) stimulate cell mitosis of sheep ruminal epithelium in vivo.

3. Since VFA generally inhibit cell proliferation in vitro insulin was proposed in this study as the possible mediator of the mitotic stimulation in vivo.

4. Infusions (6 h) of insulin (0.125 U/kg per h) plus glucose (300 mg/kg per h) (n 5), and glucose alone (300 mg/kg per h) (n 2) resulted in higher mitotic index of biopsied rumen epithelium (MI) during 3 or 6 to 24 h after the start of infusion, and higher plasma immunoreactive insulin (IRI) and higher plasma glucose (PG) during the infusion.

5. Insulin plus glucose infusion showed higher MI, higher IRI, and lower PG than glucose infusion.

6. Sheep infused with saline for 6 h (n 1) showed no marked changes in MI, IRI, and PG.

7. Increased IRI by insulin plus glucose or glucose alone infusion was considered to stimulate cell proliferation in rumen epithelium.

8. Other possible mediations were discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Baile, C., Glick, Z. & Maya, J. (1969). J. Dairy Sci. 9, 513.CrossRefGoogle Scholar
Bassett, J. M. (1974). Aust. J. biol. Sci. 27, 167.CrossRefGoogle Scholar
Bottenstein, J. M., Hayashi, I., Hutchings, S., Masui, H., Mather, J., McClure, D. B., Ohasa, S., Rizzino, A., Sato, G., Serrero, G., Wolfe, R. & Wu, R. (1979). In Methou5 in Enzymology, vol. LVIII, p. 94. London and New York: Academic Press.Google Scholar
Brockman, R. P. (1978). Can. vet. J. 19, 55.Google Scholar
Bullough, W. S. (1975). Biol. Rev. 50, 99.CrossRefGoogle Scholar
Eastwood, G. L. (1977). Gastroenterol. 72, 962.CrossRefGoogle Scholar
Fell, B. F., Kay, M., Whitelaw, F. G. & Boyne, R. (1968). Res. vet. Sci. 9, 458.CrossRefGoogle Scholar
Fell, B. F. & Weekes, T. E. C. (1975). In Metabolism in the Ruminants. p. 101 [McDonald, I. W. and Warner, A. C. I. editors]. Armidale: University of New England Publishing Unit.Google Scholar
Ginsburg, E., Salomon, D., Sreevalsan, T. & Freese, E. (1973). Proc. natn. Acad. Sci. 70, 2457.CrossRefGoogle Scholar
Hamilton, A. I. & Blackwood, H. J. J. (1977). J. Anat. 124, 757.Google Scholar
Herbert, V., Law, K., Bottlieb, C. W. & Bleicher, S. (1965). J. clin. Endocr. Metab. 25, 1375.CrossRefGoogle Scholar
Huggett, A. G. & Nixon, D. A. (1957). Biochem. J. 66, 129.Google Scholar
Jensen, R. & Mackey, D. R. (1965). In Disease of Feedlot Cattle, p. 282. Philadelphia: Lea and Febiger.Google Scholar
Jordan, H. N. & Phillips, R. W. (1978). Am. J. Physiol. 234, E 162.Google Scholar
Macher, B. A., Lockey, F., Fung, Y. K. & Seeley, C. C. (1978). Expl Cell Res. 117, 95.CrossRefGoogle Scholar
Malaisse-Lam, F., Greider, M. H., Malaisse, W. J. & Lacy, P. E. (1971). J. Cell Biol. 4, 530.CrossRefGoogle Scholar
Manns, J. G. & Boda, J. M. (1967). Am. J. Physiol. 212, 747.Google Scholar
Mori, Y., Akedo, H.. Tanigawa, Y. & Okada, M. (1979). Expl Cell Res. 118, 15.CrossRefGoogle Scholar
Ørskov, E. R. (1976). Proc. Nutr. Soc. 35, 245.CrossRefGoogle Scholar
Ryan, G. P., Dudrick, S. J., Copeland, E. M. & Johnson, L. R. (1979). Gastroenterol. 77, 658.CrossRefGoogle Scholar
Sakata, T., Hikosaka, K., Shiomura, Y. & Tamate, H. (1980). In Cell Proliferation in the Gastrointestinal Tract [Appleton, D. R.Sunter, J. P. and Watson, A. J. editors]. Tunbridge Wells: Pitman Medical Publishing. (In the Press.)Google Scholar
Sakata, T. & Tamate, H. (1978 a). Res. vet. Sci. 24, 1Google Scholar
Sakata, T. & Tamate, H. (1978 b). J. Dairy Sci. 61, 1109.CrossRefGoogle Scholar
Sakata, T. & Tamate, H. (1978 c) Jap. J. zootech. Sci. 49, 687.Google Scholar
Sakata, T. & Tamate, H. (1979). J. Daity Sci. 62, 49.Google Scholar
Schnorr, B. & Vollmerhaus, B. (1967). Zbl. Vet Med. A14, 93.CrossRefGoogle Scholar
Schnorr, B. & Vollmerhaus, B. (1968). Zbl. Vet. Med. A15, 799.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Stutisticul Methods, 6th ed.Ames: The Iowa State University press.Google Scholar
Stern, J. S., Baile, C. A. & Mayer, J. (1970). Am. J. Physiol. 219, 84.CrossRefGoogle Scholar
Szemerédy, G. & Raul, R. (1976). Acta. Vet. Acad. Sci. Hung. 26, 313.Google Scholar
Tamate, H. (1957). Tohoku J. agric. Res. 8, 65.Google Scholar
Tamate, H. & Kikuchi, T. (1978). Jap. J. vet. Sci. 40, 21.Google Scholar
Tamate, H., Kikuchi, T. & Sakata, T. (1974). Tohoku J. agric. Res. 25, 142.Google Scholar
Tamate, H.. Nagatani, T., Yoneya, S., Sakata, T. & Miura, J. (1973). Tohoku J. agric. Res. 23, 184.Google Scholar
Trenkle, A. (1972). J. Dairy Sci. 55, 1200.CrossRefGoogle Scholar
Weekes, T. E. C. (1972). J. agric. Sci., Camb. 79, 409.CrossRefGoogle Scholar
Wright, J. A. (1973). Expl Cell Res. 78, 456.Google Scholar