Transcription, Chromatin, and Epigenetics
Sequential Recruitment of PCAF and BRG1 Contributes to Myogenin Activation in 12-O-Tetradecanoylphorbol-13-acetate-induced Early Differentiation of Rhabdomyosarcoma-derived Cells*

https://doi.org/10.1074/jbc.M609448200Get rights and content
Under a Creative Commons license
open access

Myogenin and its upstream regulator MyoD are known to be required for myogenic cell differentiation. Although both of them can be expressed in rhabdomyosarcoma-derived RD cells, the cells are unable to undergo full-scale terminal myogenic differentiation. 12-O-Tetradecanoylphorbol-13-acetate (TPA) has been found to be functional in the induction of RD cell differentiation, whereas its mechanism is not fully understood. By using quantitative real-time-based chromatin immunoprecipitation and real-time reverse transcription-PCR-based promoter activity assays, we examined the activation mechanism of the myogenin gene during TPA-induced differentiation of the RD cells. We have shown that a histone acetyltransferase PCAF and ATPase subunit BRG1 of the SWI/SNF chromatin remodeling complex are sequentially recruited to the promoter of the myogenin gene. Both PCAF and BRG1 are also involved in the activation of the myogenin gene. In addition, we have found that the p38 mitogen-activated protein kinase is required for BRG1 recruitment in TPA-mediated myogenin induction. We propose that there are two distinct activation steps for the induction of myogenin in TPA-induced early differentiation of RD cells: 1) an early step that requires PCAF activity to acetylate core histones and MyoD to initiate myogenin gene expression, and 2) a later step that requires p38-dependent activity of the SWI/SNF remodeling complex to provide an open conformation for the induction of myogenin. Our studies reveal an essential role for epigenetic regulation in TPA-induced differentiation of RD cells and provide potential drug targets for future treatment of the rhabdomyosarcoma.

Cited by (0)

*

This work was supported by Natural Science Foundation of China Grant 90408007 (to Y. F. S.), Hong Kong Research Grant Council Grant HKUST6412/05M (to Z. W.), and 973 Program Grant 2005CB522405 of the Ministry of Science & Technology, China (to Y. Z.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

These authors contributed equally to this work.