Journal of Biological Chemistry
Volume 280, Issue 50, 5 December 2005, Pages 41744-41752
Journal home page for Journal of Biological Chemistry

Mechanisms of Signal Transduction
SLAM-associated Protein as a Potential Negative Regulator in Trk Signaling*

https://doi.org/10.1074/jbc.M506554200Get rights and content
Under a Creative Commons license
open access

Neurotrophin signaling plays important roles in regulating the survival, differentiation, and maintenance of neurons in the nervous system. Binding of neurotrophins to their cognate receptors Trks induces transactivation and phosphorylation of the receptor at several tyrosine residues. These phosphorylated tyrosine residues then serve as crucial docking sites for adaptor proteins containing a Src homology 2 or phosphotyrosine binding domain, which upon association with the receptor initiates multiple signaling events to mediate the action of neurotrophins. Here we report the identification of a Src homology 2 domain-containing molecule, SLAM-associated protein (SAP), as an interacting protein of TrkB in a yeast two-hybrid screen. SAP was initially identified as an adaptor molecule in SLAM family receptor signaling for regulating interferon-γ secretion. In the current study, we found that SAP interacted with TrkA, TrkB, and TrkC receptors in vitro and in vivo. Binding of SAP required Trk receptor activation and phosphorylation at the tyrosine 674 residue, which is located in the activation loop of the kinase domain. Overexpression of SAP with Trk attenuated tyrosine phosphorylation of the receptors and reduced the binding of SH2B and Shc to TrkB. Moreover, overexpression of SAP in PC12 cells suppressed the nerve growth factor-dependent activation of extracellular signal-regulated kinases 1/2 and phospholipase Cγ, in addition to inhibiting neurite outgrowth. In summary, our findings demonstrated that SAP may serve as a negative regulator of Trk receptor activation and downstream signaling.

Cited by (0)

*

This work was supported in part by Research Grants Council of Hong Kong Grant HKUST3/03C, Area of Excellence Scheme of the University Grants Committee Grant AoE/B-15/01, and High Impact Area Grant HIA03/04.SC01. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

Recipient of a Croucher Foundation Fellowship.