Journal of Biological Chemistry
Volume 275, Issue 31, 4 August 2000, Pages 23774-23782
Journal home page for Journal of Biological Chemistry

PROTEIN STRUCTURE AND FOLDING
Substitutions in a Homologous Region of Extracellular Loop 2 of CXCR4 and CCR5 Alter Coreceptor Activities for HIV-1 Membrane Fusion and Virus Entry*

https://doi.org/10.1074/jbc.M003438200Get rights and content
Under a Creative Commons license
open access

CXCR4 and CCR5 are the principal coreceptors for human immunodeficiency virus type-1 (HIV-1) infection. Previously, mutagenesis of CXCR4 identified single amino acid changes that either impaired CXCR4's coreceptor activity for CXCR4-dependent (X4) isolate envelope glycoproteins (Env) or expanded its activity, allowing it to serve as a functional coreceptor for CCR5-dependent (R5) isolates. The most potent of these point mutations was an alanine substitution for the aspartic acid residue at position 187 in extracellular loop 2 (ecl-2), and here we show that this mutation also permits a variety of primary R5 isolate Envs, including those of other subtypes (clades), to employ it as a coreceptor. We also examined the corresponding region of CCR5 and demonstrate that the substitution of the serine residue in the homologous ecl-2 position with aspartic acid impairs CCR5 coreceptor activity for isolates across several clades. These results highlight a homologous and critical element in ecl-2, of both the CXCR4 and CCR5 molecules, for their respective coreceptor activities. Charge elimination expands CXCR4 coreceptor activity, while a similar charge introduction can destroy the coreceptor function of CCR5. These findings provide further evidence that there are conserved elements in both CXCR4 and CCR5 involved in coreceptor function.

Cited by (0)

Published, JBC Papers in Press, May 24, 2000, DOI 10.1074/jbc.M003438200

*

This study was supported by National Institutes of Health Grant R01AI43885 and Uniformed Services University of the Health Sciences Grant RO73FG (to C. C. B.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.