Journal of Biological Chemistry
Volume 281, Issue 49, 8 December 2006, Pages 37345-37352
Journal home page for Journal of Biological Chemistry

Genes: Structure and Regulation
GATA-1-mediated Transcriptional Repression Yields Persistent Transcription Factor IIB-Chromatin Complexes*

https://doi.org/10.1074/jbc.M605774200Get rights and content
Under a Creative Commons license
open access

The hematopoietic GATA factors GATA-1 and GATA-2, which have distinct and overlapping roles to regulate blood cell development, are reciprocally expressed during erythropoiesis. GATA-1 directly represses Gata2 transcription, and reduced GATA-2 synthesis promotes red blood cell development. Gata2 repression involves “GATA switches” in which GATA-1 displaces GATA-2 from Gata2 regulatory regions. We show that extragenic GATA switch sites occupied by GATA-2 associate with as much RNA polymerase II (Pol II) and basal transcription factors as present at the active Gata2 promoters. Pol II bound to GATA switch sites in the active locus was phosphorylated on serine 5 of the carboxyl-terminal domain, indicative of elongation competence. GATA-1-mediated displacement of GATA-2 from GATA switch sites reduced Pol II recruitment to all sites except the far upstream –77-kb region. Surprisingly, TFIIB occupancy persisted at most sites upon repression. These results indicate that GATA-2-bound extragenic regulatory elements recruit Pol II, GATA-1 binding expels Pol II, and despite the persistent TFIIB-chromatin complexes, Pol II recruitment is blocked.

Cited by (0)

*

This work was supported by National Institutes of Health Grants DK55700 and DK68634. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1 and S2 and Table S1.

1

A predoctoral fellow of the American Heart Association.