Journal of Biological Chemistry
Volume 282, Issue 39, 28 September 2007, Pages 28395-28407
Journal home page for Journal of Biological Chemistry

Mechanisms of Signal Transduction
Several Dual Specificity Phosphatases Coordinate to Control the Magnitude and Duration of JNK Activation in Signaling Response to Oxidative Stress*

https://doi.org/10.1074/jbc.M705142200Get rights and content
Under a Creative Commons license
open access

Mitogen-activated protein kinases (MAPKs) are important mediators that integrate signaling from upstream pathways in response to various environmental cues. In order to control appropriate gene expression through phosphorylation of transcription factors, the activity of MAPKs must be tightly regulated by the actions coordinated between protein kinases and phosphatases. In this study, we explore the underlying mechanism through which the oxidative stress-activated c-Jun N-terminal kinases (JNKs), members of MAPKs, are regulated by dual specificity phosphatases (DUSPs). DUSPs are a group of enzymes that belong to the superfamily of protein-tyrosine phosphatases. They are able to recognize phospho-Ser/Thr and phospho-Tyr residues in substrates. Using quantitative real time PCR, we found that stimulation of human embryonic kidney 293T cells with H2O2 or xanthine/xanthine oxidase led to inducible expression of multiple DUSPs. We used RNA interference to characterize the functional role of these DUSPs and found rapid and transient induction of DUSP1 and DUSP10 to be essential for determining the appropriate magnitude of JNK activation in response to oxidative stress. The transcription factor ATF2, which is phosphorylated and activated by JNK, is a critical mediator for inducible expression of DUSP1 and DUSP10 in this signaling pathway. We further demonstrated that DUSP4 and DUSP16, both showing significant late phase induction, dephosphorylate JNK effectively, causing the down-regulation of the signaling cascade. Thus, this study provides new insights into the role of several DUSPs that coordinate with each other to control the magnitude and duration of JNK activity in response to oxidative stress.

Cited by (0)

*

This work was supported by Taiwan National Science Council Grant NSC-95-2311-B-001-011 and an Academia Sinica thematic project grant. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement”in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1 and S2.

1

These authors contributed equally to this work.