Journal of Biological Chemistry
Volume 274, Issue 46, 12 November 1999, Pages 32936-32942
Journal home page for Journal of Biological Chemistry

MEMBRANES AND BIOENERGETICS
The Membrane Binding Domains of Prostaglandin Endoperoxide H Synthases 1 and 2: PEPTIDE MAPPING AND MUTATIONAL ANALYSIS*

https://doi.org/10.1074/jbc.274.46.32936Get rights and content
Under a Creative Commons license
open access

Prostaglandin endoperoxide H synthases 1 and 2 (PGHS-1 and -2) are the major targets of nonsteroidal anti-inflammatory drugs. Both isozymes are integral membrane proteins but lack transmembrane domains. X-ray crystallographic studies have led to the hypothesis that PGHS-1 and -2 associate with only one face of the membrane bilayer through a novel, monotopic membrane binding domain (MBD) that is comprised of four short, consecutive, amphipathic α-helices (helices A–D) that include residues 74–122 in ovine PGHS-1 (oPGHS-1) and residues 59–108 in human PGHS-2 (hPGHS-2). Previous biochemical studies from our laboratory showed that the MBD of oPGHS-1 lies somewhere between amino acids 25 and 166. In studies reported here, membrane-associated forms of oPGHS-1 and hPGHS-2 were labeled using the hydrophobic, photoactivable reagent 3-trifluoro-3-(m-[125I]iodophenyl)diazirine, isolated, and cleaved with AspN and/or GluC, and the photolabeled peptides were sequenced. The results establish that the MBDs of oPGHS-1 and hPGHS-2 reside within residues 74–140 and 59–111, respectively, and thus provide direct provide biochemical support for the hypothesis that PGHS-1 and -2 do associate with membranes through a monotopic MBD. We also prepared HelA, HelB, and HelC mutants of oPGHS-1, in which, for each helix, three or four hydrophobic residues expected to protrude into the membrane were replaced with small, neutral residues. When expressed in COS-1 cells, HelA and HelC mutants exhibited little or no catalytic activity and were present, at least in part, as misfolded aggregates. The HelB mutant retained about 20% of the cyclooxygenase activity of native oPGHS-1 and partitioned in subcellular fractions like native oPGHS-1; however, the HelB mutant exhibited an extra site of N-glycosylation at Asn104. When this glycosylation site was eliminated (HelB/N104Q mutation), the mutant lacked cyclooxygenase activity. Thus, our mutational analyses indicate that the amphipathic character of each helix is important for the assembly and folding of oPGHS-1 to a cyclooxygenase active form.

Cited by (0)

*

This work was supported in part by National Institutes of Health Grant DK22042.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.