Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Clock gene expression in gravid uterus and extra-embryonic tissues during late gestation in the mouse

Christine K. Ratajczak A , Erik D. Herzog B and Louis J. Muglia C D
+ Author Affiliations
- Author Affiliations

A Molecular Cell Biology Program, Washington University, St Louis, MO 63110, USA.

B Department of Biology, Washington University, St Louis, MO 63130, USA.

C Department of Paediatrics, Vanderbilt University, School of Medicine and the Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN 37232, USA.

D Corresponding author. Email: louis.muglia@vanderbilt.edu

Reproduction, Fertility and Development 22(5) 743-750 https://doi.org/10.1071/RD09243
Submitted: 22 September 2009  Accepted: 17 November 2009   Published: 7 April 2010

Abstract

Evidence in humans and rodents suggests the importance of circadian rhythmicity in parturition. A molecular clock underlies the generation of circadian rhythmicity. While this molecular clock has been identified in numerous tissues, the expression and regulation of clock genes in tissues relevant to parturition is largely undefined. Here, the expression and regulation of the clock genes Bmal1, Clock, cryptochrome (Cry1/2) and period (Per1/2) was examined in the murine gravid uterus, placenta and fetal membranes during late gestation. All clock genes examined were expressed in the tissues of interest throughout the last third of gestation. Upregulation of a subset of these clock genes was observed in each of these tissues in the final two days of gestation. Oscillating expression of mRNA for a subset of the examined clock genes was detected in the gravid uterus, placenta and fetal membranes. Furthermore, bioluminescence recording on explants from gravid Per2::luciferase mice indicated rhythmic expression of PER2 protein in these tissues. These data demonstrate expression and rhythmicity of clock genes in tissues relevant to parturition indicating a potential contribution of peripheral molecular clocks to this process.

Additional keywords: circadian rhythmicity, parturition, pregnancy.


Acknowledgements

We thank Sherri Vogt, Crystal Kelley and Tatiana Simon for technical assistance. Support from NIMH 63104 (E.D.H.). This work was supported by the Center for Preterm Birth Research at Washington University in St. Louis.


References

Abe, M. , Herzog, E. D. , Yamazaki, S. , Straume, M. , Tei, H. , Sakaki, Y. , Menaker, M. , and Block, G. D. (2002). Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356.
PubMed |  CAS |

Alvarez, J. D. , Hansen, A. , Ord, T. , Bebas, P. , Chappell, P. E. , Giebultowicz, J. M. , Williams, C. , Moss, S. , and Sehgal, A. (2008). The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. J. Biol. Rhythms 23, 26–36.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chappell, P. E. , White, R. S. , and Mellon, P. L. (2003). Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1–7 cell line. J. Neurosci. 23, 11 202–11 213.
PubMed |  CAS |

Dolatshad, H. , Campbell, E. A. , O’Hara, L. , Maywood, E. S. , Hastings, M. H. , and Johnson, M. H. (2006). Developmental and reproductive performance in circadian mutant mice. Hum. Reprod. 21, 68–79.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Dolatshad, H. , Davis, F. C. , and Johnson, M. H. (2009). Circadian clock genes in reproductive tissues and the developing conceptus. Reprod. Fertil. Dev. 21, 1–9.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Duncan, J. L. , Yang, H. , Doan, T. , Silverstein, R. S. , and Murphy, G. J. , et al. (2006). Scotopic visual signalling in the mouse retina is modulated by high-affinity plasma membrane calcium extrusion. J. Neurosci. 26, 7201–7211.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fujimoto, Y. , Yagita, K. , and Okamura, H. (2006). Does mPER2 protein oscillate without its coding mRNA cycling?: post-transcriptional regulation by cell clock. Genes Cells 11, 525–530.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Herzog, E. D. , Grace, M. S. , Harrer, C. , Williamson, J. , Shinohara, K. , and Block, G. D. (2000). The role of Clock in the developmental expression of neuropeptides in the suprachiasmatic nucleus. J. Comp. Neurol. 424, 86–98.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kabrita, C. S. , and Davis, F. C. (2008). Development of the mouse suprachiasmatic nucleus: determination of time of cell origin and spatial arrangements within the nucleus. Brain Res. 1195, 20–27.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Karman, B. N. , and Tischkau, S. A. (2006). Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biol. Reprod. 75, 624–632.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kennaway, D. J. , Varcoe, T. J. , and Mau, V. J. (2003). Rhythmic expression of clock and clock-controlled genes in the rat oviduct. Mol. Hum. Reprod. 9, 503–507.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kennaway, D. J. , Boden, M. J. , and Voultsios, A. (2005). Reproductive performance in female ClockΔ19 mutant mice. Reprod. Fertil. Dev. 16, 801–810.
Crossref | GoogleScholarGoogle Scholar |

Knutsson, A. (2003). Health disorders of shift workers. Occup. Med. (Lond.) 53, 103–108.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Livak, K. J. , and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

McDearmon, E. L. , Patel, K. N. , Ko, C. H. , Walisser, J. A. , and Schook, A. C. , et al. (2006). Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science 314, 1304–1308.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Miller, B. H. , Olson, S. L. , Turek, F. W. , Levine, J. E. , Horton, T. H. , and Takahashi, J. S. (2004). Circadian clock mutation disrupts oestrous cyclicity and maintenance of pregnancy. Curr. Biol. 14, 1367–1373.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Noshiro, M. , Furukawa, M. , Honma, S. , Kawamoto, T. , Hamada, T. , Honma, K. , and Kato, Y. (2005). Tissue-specific disruption of rhythmic expression of Dec1 and Dec2 in clock mutant mice. J. Biol. Rhythms 20, 404–418.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ratajczak, C. K. , Boehle, K. L. , and Muglia, L. J. (2009). Impaired steroidogenesis and implantation failure in Bmal1–/– mice. Endocrinology 150, 1879–1885.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Reppert, S. M. , and Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature 418, 935–941.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Reppert, S. M. , Henshaw, D. , Schwartz, W. J. , and Weaver, D. R. (1987). The circadian-gated timing of birth in rats: disruption by maternal SCN lesions or by removal of the fetal brain. Brain Res. 403, 398–402.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ripperger, J. A. , and Schibler, U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369–374.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Saxena, M. T. , Aton, S. J. , Hildebolt, C. , Prior, J. L. , Abraham, U. , Piwnica-Worms, D. , and Herzog, E. D. (2007). Bioluminescence imaging of period1 gene expression in utero. Mol. Imaging 6, 68–72.
PubMed |  CAS |

Shimomura, H. , Moriya, T. , Sudo, M. , Wakamatsu, H. , Akiyama, M. , Miyake, Y. , and Shibata, S. (2001). Differential daily expression of Per1 and Per2 mRNA in the suprachiasmatic nucleus of fetal and early postnatal mice. Eur. J. Neurosci. 13, 687–693.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Storch, K. F. , Paz, C. , Signorovitch, J. , Raviola, E. , Pawlyk, B. , Li, T. , and Weitz, C. J. (2007). Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130, 730–741.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yamamoto, T. , Nakahata, Y. , Tanaka, M. , Yoshida, M. , Soma, H. , Shinohara, K. , Yasuda, A. , Mamine, T. , and Takumi, T. (2005). Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J. Biol. Chem. 280, 42 036–42 043.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, X. , Downes, M. , Yu, R. T. , Bookout, A. L. , He, W. , Straume, M. , Mangelsdorf, D. J. , and Evans, R. M. (2006). Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801–810.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yoo, S. H. , Yamazaki, S. , Lowrey, P. H. , Shimomura, K. , and Ko, C. H. , et al. (2004). PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339–5346.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |