Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Anagostic Interactions in Alkyl-Fluorenyl-Substituted N‐Heterocyclic Carbene Complexes of Palladium(ii)*

Hamzé Almallah A , Eric Brenner https://orcid.org/0000-0003-1984-2294 A D , Dominique Matt https://orcid.org/0000-0001-7928-0719 A D , Mohamad Jahjah B , Akram Hijazi B and Christophe Gourlaouen C
+ Author Affiliations
- Author Affiliations

A Laboratoire de Chimie Inorganique Moléculaire et Catalyse, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France.

B Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Sciences, Lebanese University, R. Hariri University Campus, Beyrouth, Hadath, Lebanon.

C Laboratoire de Chimie Quantique, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France.

D Corresponding authors. Email: eric.brenner@unistra.fr; dmatt@unistra.fr

Australian Journal of Chemistry 73(6) 579-585 https://doi.org/10.1071/CH19608
Submitted: 25 November 2019  Accepted: 4 February 2020   Published: 26 March 2020

Abstract

Two imidazolylidene (Im) complexes of the general formula trans-[PdX2(Im)(pyridine)] (X = Cl (2), Br (3)), in which the N-heterocyclic carbene ligand has one of its nitrogen atoms substituted by a bulky 9-propyl-9-fluorenyl group (PrF), have been prepared and fully characterised by spectroscopic methods and single-crystal X-ray structure analyses. In the solid state, the Im ring plane and the coordination plane of each complex are nearly orthogonal, thereby minimising the steric interactions between the N-substituents and the halide atoms. In both structures two methylenic C–H bonds sit near the dz2 axis point to the palladium atom, resulting in CH⋯Pd separations of 2.58/2.95 Å in 2 and 2.74/2.74 Å in 3. NMR measurements and DFT calculations indicate that these methylene groups are involved in anagostic CH⋯M interactions but not in significant H⋯X bonding.


References

[1]  A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[2]     (a) N-Heterocyclic Carbenes in Synthesis (Ed. S. P. Nolan) 2006 (Wiley-VCH: Weinheim).
         (b) N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis (Ed. S. J. Cazin) 2011 (Springer: Berlin).
         (c) N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, 2nd edn (Catalysis Series) (Ed. S. Diez-Gonzalez) 2016 (Royal Society of Chemistry: London).
      (d) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
         | Crossref | GoogleScholarGoogle Scholar |
         (e) H. V. Huynh, The Organometallic Chemistry of N-Heterocyclic Carbenes 2017 (John Wiley and Sons, Inc.: Hoboken, NJ).
      (f) A. A. Danopoulos, T. Simler, P. Braunstein, Chem. Rev. 2019, 119, 3730.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) M. Teci, E. Brenner, D. Matt, L. Toupet, Eur. J. Inorg. Chem. 2013, 2841.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Teci, E. Brenner, D. Matt, C. Gourlaouen, L. Toupet, Dalton Trans. 2014, 43, 12251.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Teci, E. Brenner, D. Matt, C. Gourlaouen, L. Toupet, Dalton Trans. 2015, 44, 9260.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Teci, D. Hueber, P. Pale, L. Toupet, A. Blanc, E. Brenner, D. Matt, Chem. – Eur. J. 2017, 23, 7809.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. M. Roe, P. M. Bailey, K. Moseley, P. M. Maitlis, Chem. Comm. 1972, 1273.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. Teci, E. Brenner, D. Matt, L. Toupet, Z. Kristallogr. NCS 2016, 231, 733.

[6]  H. Almallah, E. Brenner, D. Matt, J. Harrowfield, M. Jahjah, A. Hijazi, Dalton Trans. 2019, 48, 14516.
         | Crossref | GoogleScholarGoogle Scholar | 31531473PubMed |

[7]  (a) J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev, C. J. O’Brien, A. Lough, M. G. Organ, Chem. – Eur. J. 2010, 16, 10844.
         | Crossref | GoogleScholarGoogle Scholar | 20665575PubMed |
      (b) P. Lei, G. R. Meng, Y. Ling, J. An, M. Szostak, J. Org. Chem. 2017, 82, 6638.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) M. Brookhart, M. L. H. Green, J. Organomet. Chem. 1983, 250, 395.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. H. Crabtree, Angew. Chem. Int. Ed. Engl. 1993, 32, 789.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  See p. 226 in: P. S. Pregosin, NMR in Organometallic Chemistry 2012 (Wiley-VCH: Weinheim).

[10]  E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, Pure Appl. Chem. 2011, 83, 1637.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Y. Zhang, J. C. Lewis, R. G. Bergman, J. A. Ellman, E. Oldfield, Organometallics 2006, 25, 3515.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  P. Queval, C. Jahier, M. Rouen, I. Artur, J. C. Legeay, L. Falivene, L. Toupet, C. Crévisy, L. Cavallo, O. Baslé, M. Mauduit, Angew. Chem. Int. Ed. 2013, 52, 14103.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) M. Teci, E. Brenner, D. Matt, L. Toupet, Z. Kristallogr. NCS 2014, 229, 169.
      (b) M. Teci, E. Brenner, D. Matt, C. Gourlaouen, L. Toupet, Chem. – Eur. J. 2015, 21, 10997.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  https://www.molnac.unisa.it/OMtools/sambvca2.0/

[15]  (a) A. Poater, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan, L. Cavallo, Organometallics 2008, 27, 2679.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano, L. Cavallo, Eur. J. Inorg. Chem. 2009, 1759.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) A. Poater, F. Ragone, R. Mariz, R. Dorta, L. Cavallo, Chem. – Eur. J. 2010, 16, 14348.
         | Crossref | GoogleScholarGoogle Scholar | 21082623PubMed |
      (b) L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L. Cavallo, Organometallics 2016, 35, 2286.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E. Gacal, S. Denizalti, A. Kinal, A. G. Gökçe, H. Türkmen, Tetrahedron 2018, 74, 6829.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  H. Baars, Y. Unoh, T. Okada, K. Hirano, T. Satoh, K. Tanaka, C. Bolm, M. Miura, Chem. Lett. 2014, 43, 1782.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  G. M. Sheldrick, Acta Crystallogr. A Found. Adv. 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar | 25537383PubMed |

[21]  G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar | 25567568PubMed |

[22]  Bruker AXS Inc., DOC-M86-EXX229 APEX3 Software User Manual 2016 (Bruker AXS Inc.: Madison, WI).

[23]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian Inc.: Wallingford, CT).

[24]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
         | Crossref | GoogleScholarGoogle Scholar | 20423165PubMed |

[26]  G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Allaham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  P. Fuentealba, H. Preuss, H. Stoll, L. Vonszentpaly, Chem. Phys. Lett. 1982, 89, 418.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  J. Contreras-Garcia, E. R. Johnson, S. Keinan, R. Chaudret, J. P. Piquemal, D. N. Beratan, W. T. Yang, J. Chem. Theory Comput. 2011, 7, 625.
         | Crossref | GoogleScholarGoogle Scholar | 21516178PubMed |