Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Structural Characterisation, and Spectroscopic Properties of Copper(i) Complexes and their Applications to Dye-Sensitised Solar Cells

Ting-Hong Huang A C , Jie Yan A , Ye-Feng Liu A , Yun-Tao Xie A and Chen Jia B
+ Author Affiliations
- Author Affiliations

A Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials and Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.

B Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Med icine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

C Corresponding author. Email: hth_chem@126.com

Australian Journal of Chemistry 68(7) 1144-1151 https://doi.org/10.1071/CH14562
Submitted: 13 September 2014  Accepted: 8 December 2014   Published: 2 March 2015

Abstract

Based on the ligand 1,4-bis(2-(diphenylphophino)benzylideneamino)benzene (pbb), two complexes, [Cu2(pbb)(2,2′-bipyridine)2](BF4)2 (1) and [Cu2(pbb)(phen)2](BF4)2 (2), have been prepared and characterised by IR, 1H NMR, 31P NMR, 19F NMR, and 11B NMR spectroscopy and X-ray crystal structure analysis. Structural analysis reveals that complexes 1 and 2 contain 1D infinite chains and 2D supramolecular networks constructed by C–H···π and π···π interactions, and an ordered-layer-lattice of BF4 is located between these 2D networks. The results show that C–H···π and π···π interactions play an important role in the formation of 2D supramolecular networks. The UV-vis absorption peaks of complexes 1 and 2 display intraligand charge transfer and metal to ligand charge transfer (MLCT) absorption. Complexes 1 and 2 display efficient luminescent emission assigned to MLCT excited states, and the maximum emissions of these complexes in acetonitrile solution are different from those of the solid-state samples. In addition, complexes 1 and 2 have been exploited as sensitisers in dye-sensitised solar cells, and efficiencies are also observed.


References

[1]  A. M. Bunzli, H. J. Bolink, E. C. Constable, C. E. Housecroft, J. M. Junquera-Hernandez, M. Neuburger, E. Orti, A. Pertegas, J. J. Serrano-Perez, D. Tordera, J. A. Zampese, Dalton Trans. 2014, 43, 738.
         | Crossref | GoogleScholarGoogle Scholar | 24145467PubMed |

[2]  H.-F. Chen, W.-Y. Hung, S.-W. Chen, T.-C. Wang, S.-W. Lin, S.-H. Chou, C.-T. Liao, H.-C. Su, H.-A. Pan, P.-T. Chou, Y.-H. Liu, K.-T. Wong, Inorg. Chem. 2012, 51, 12114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOltrbF&md5=ca193cf5f9abaced251f65af3990a95cCAS | 23102402PubMed |

[3]  R. D. Costa, F. J. Cespedes-Guirao, E. Orti, H. J. Bolink, J. Gierschner, F. Fernandez-Lazaro, A. Sastre-Santos, Chem. Commun. 2009, 3886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Slurc%3D&md5=947ec6b2d05ba1246ccaa72ce5ed8efeCAS |

[4]  K. Hasan, L. Donato, Y. Shen, J. D. Slinker, E. Zysman-Colman, Dalton Trans. 2014, 43, 13672.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1aiur%2FM&md5=70738e6f2405673fce4d641690e70d47CAS | 25098328PubMed |

[5]  G. E. Schneider, A. Pertegas, E. C. Constable, C. E. Housecroft, N. Hostettler, C. D. Morris, J. A. Zampese, H. J. Bolink, J. M. Junquera-Hernandez, E. Orti, M. Sessolo, J. Mater. Chem. C 2014, 2, 7047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFehsbnM&md5=e64a9da1db25a2c6e5c8efd8294b0204CAS |

[6]  D. Tordera, A. M. Bünzli, A. Pertegás, J. M. Junquera-Hernández, E. C. Constable, J. A. Zampese, C. E. Housecroft, E. Ortí, H. J. Bolink, Chem. – Eur. J. 2013, 19, 8597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntF2mtbw%3D&md5=9ee2f9a63672973cf54f2106197cc3a4CAS | 23649547PubMed |

[7]  K. B. Aribia, T. Moehl, S. M. Zakeeruddin, M. Gratzel, Chem. Sci. 2013, 4, 454.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  E. C.-H. Kwok, M.-Y. Chan, K. M.-C. Wong, V. W.-W. Yam, Chem. – Eur. J. 2014, 20, 3142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFSns7g%3D&md5=fe708e958262c4546ac19b165188e6e6CAS |

[9]  Q. Miao, S. Zhang, H. Xu, P. Zhang, H. Li, Chem. Commun. 2013, 49, 6980.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOjsL7P&md5=679e787f753b02c32eb27ca157ccc33eCAS |

[10]  J.-S. Ni, K.-C. Ho, K.-F. Lin, J. Mater. Chem. A. 2013, 1, 3463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVGju7w%3D&md5=053481a4a3ea937f329b478dbe255baeCAS |

[11]  S. H. Wadman, J. M. Kroon, K. Bakker, R. W. A. Havenith, G. P. M. van Klink, G. van Koten, Organometallics 2010, 29, 1569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislKitLw%3D&md5=d47e9eb7531045ee1daf6b9dd00ba30aCAS |

[12]  J. Xu, H. Wu, X. Jia, D. Zou, Chem. Commun. 2012, 48, 7793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSlsb3J&md5=836b4454f7c77c848c40e666d4522361CAS |

[13]  M. He, Z. Ji, Z. Huang, Y. Wu, J. Phys. Chem. C 2014, 118, 16518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFahsb8%3D&md5=15c60bc6c63aa6dbbf18da47dd0fdcacCAS |

[14]  T. Hewat, S. McDonald, J. Lee, M. Rahman, P. Cameron, F.-C. Hu, Y. Chi, L. J. Yellowlees, N. Robertson, RSC Adv. 2014, 4, 10165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWlsbg%3D&md5=b9c0e18354a8abe5da228beef8c16bf6CAS |

[15]  C.-W. Hsu, S.-T. Ho, K.-L. Wu, Y. Chi, S.-H. Liu, P.-T. Chou, Energy Environ. Sci. 2012, 5, 7549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslagu74%3D&md5=5a90c2ff223cff238519ab9f5cdf31ffCAS |

[16]  M. Hussain, A. Islam, I. Bedja, R. K. Gupta, L. Han, A. El-Shafei, Phys. Chem. Chem. Phys. 2014, 16, 14874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKgs7vE&md5=213a2dfb0f52e3894d8ea8dcb6fbb039CAS | 24926746PubMed |

[17]  G. C. Vougioukalakis, T. Stergiopoulos, A. G. Kontos, E. K. Pefkianakis, K. Papadopoulos, P. Falaras, Dalton Trans. 2013, 42, 6582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVChsLw%3D&md5=e25d1b0c7117fc237ec45dd2abae5c47CAS | 23474693PubMed |

[18]  K. A. Wills, H. J. Mandujano-Ramirez, G. Merino, D. Mattia, T. Hewat, N. Robertson, G. Oskam, M. D. Jones, S. E. Lewis, P. J. Cameron, RSC Adv. 2013, 3, 23361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ylt7zJ&md5=12821808e8f40ed994d2eb2ae39da673CAS |

[19]  T. Bessho, E. C. Constable, M. Graetzel, A. Hernandez Redondo, C. E. Housecroft, W. Kylberg, M. K. Nazeeruddin, M. Neuburger, S. Schaffner, Chem. Commun. 2008, 3717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOhsrc%3D&md5=013d5000581c25a39d9d9d7d3e8835d4CAS |

[20]  E. C. Constable, A. H. Redondo, C. E. Housecroft, M. Neuburger, S. Schaffner, Dalton Trans. 2009, 6634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Klsr4%3D&md5=b367b413a6f040e21b9f01a329095dc3CAS | 19672508PubMed |

[21]  M. Sandroni, M. Kayanuma, A. Planchat, N. Szuwarski, E. Blart, Y. Pellegrin, C. Daniel, M. Boujtita, F. Odobel, Dalton Trans. 2013, 42, 10818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOku7nL&md5=a6d92f4c90b63bbfcc74d8edae9390daCAS | 23783812PubMed |

[22]  B. Bozic-Weber, E. C. Constable, S. O. Furer, C. E. Housecroft, L. J. Troxler, J. A. Zampese, Chem. Commun. 2013, 49, 7222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFaltbrO&md5=7ac0604cc66a94b46ec7393220d9390cCAS |

[23]  J. Baldenebro-Lopez, N. Flores-Holguin, J. Castorena-Gonzalez, D. Glossman-Mitnik, J. Photochem. Photobiol. A. 2013, 267, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SjurnN&md5=d24403d9cd0b25e07be07aa248816e48CAS |

[24]  D. G. Cuttell, S.-M. Kuang, P. E. Fanwick, D. R. McMillin, R. A. Walton, J. Am. Chem. Soc. 2002, 124, 6.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovV2gtbw%3D&md5=4361aad68bdf22e16cd542e66ecf862aCAS | 11772046PubMed |

[25]  R. Hou, T.-H. Huang, X.-J. Wang, X.-F. Jiang, Q.-L. Ni, L.-C. Gui, Y.-J. Fan, Y.-L. Tan, Dalton Trans. 2011, 40, 7551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1GltLs%3D&md5=22ab38fe090e71b7feb27e0d497b921aCAS | 21706081PubMed |

[26]  B. Bozic-Weber, S. Y. Brauchli, E. C. Constable, S. O. Furer, C. E. Housecroft, I. A. Wright, Phys. Chem. Chem. Phys. 2013, 15, 4500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFGksro%3D&md5=529b6c1fd377e54a81793e32cf0b0fd5CAS | 23440045PubMed |

[27]  A. J. Blake, N. R. Champness, A. N. Khlobystov, D. A. Lemenovskii, W.-S. Li, M. Schroder, Chem. Commun. 1997, 1339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlSjtrc%3D&md5=5afdd9276b121edcfcaae35127b2056cCAS |

[28]  P. O. Oguadinma, F. Schaper, Organometallics 2009, 28, 6721.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleksLbO&md5=2bdf021894fc95bf2a9fb57b4a98e784CAS |

[29]  D. L. Reger, A. Debreczeni, B. Reinecke, V. Rassolov, M. D. Smith, R. F. Semeniuc, Inorg. Chem. 2009, 48, 8911.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVens7jK&md5=ed31fe73dfe2277374c5ef03dde37e91CAS | 19697953PubMed |

[30]  K.-i. Sakai, T. Akutagawa, T. Hasegawa, T. Nakamura, Phys. Chem. Chem. Phys. 2003, 5, 2469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVahsbY%3D&md5=f2b6d3bc1082cb0d2bb3f0b31cff25e1CAS |

[31]  M. Sandroni, L. Favereau, A. Planchat, H. Akdas-Kilig, N. Szuwarski, Y. Pellegrin, E. Blart, H. Le Bozec, M. Boujtita, F. Odobel, J. Mater. Chem. A 2014, 2, 9944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWmu7jL&md5=ae431fbfff5eacc71f049fecf7d44ea4CAS |

[32]  H. Hofmeier, U. S. Schubert, Chem. Soc. Rev. 2004, 33, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVWgurw%3D&md5=138a8e8ef1c3b87eef1fab8fef90cbc8CAS | 15280970PubMed |

[33]  M. Adams, C. de Kock, P. J. Smith, K. Chibale, G. S. Smith, J. Organomet. Chem. 2013, 736, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvV2ku7o%3D&md5=cecc72ba6ddcb06a4eec6efd11869399CAS |

[34]  T. B. Rauchfuss, J. Organomet. Chem. 1978, 162, C19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXnt1eitg%3D%3D&md5=78ae066a7ffee456723dcbb906e8a7c1CAS |

[35]  M. Winter, WebElements Periodic Table (Professional Edition). Available at http://www.webelements.com.

[36]  T.-H. Huang, M.-H. Zhang, Inorg. Chim. Acta 2014, 416, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1Gmur4%3D&md5=48ecd59af1ddb71e588a799eaff01ed9CAS |

[37]  Q.-L. Ni, X.-F. Jiang, L.-C. Gui, X.-J. Wang, K.-G. Yang, X.-S. Bi, New J. Chem. 2011, 35, 2471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOjtrvE&md5=eb5ac4b6377a5f28788e1b3364c66b21CAS |

[38]  X. Liu, H. Nan, W. Sun, Q. Zhang, M. Zhan, L. Zou, Z. Xie, X. Li, C. Lu, Y. Cheng, Dalton Trans. 2012, 41, 10199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKnsLzM&md5=3325d1df1ea497af616d784110a2f2ffCAS | 22772090PubMed |

[39]  G. F. Manbeck, W. W. Brennessel, R. Eisenberg, Inorg. Chem. 2011, 50, 3431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1SjsLk%3D&md5=54f8a2363786954341c122d2a4bc7e06CAS | 21417454PubMed |

[40]  M. G. Crestani, G. F. Manbeck, W. W. Brennessel, T. M. McCormick, R. Eisenberg, Inorg. Chem. 2011, 50, 7172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlGgsbc%3D&md5=869fd4ee9a2efff31c7e5f2afce8e1c5CAS | 21714488PubMed |

[41]  A. Makal, J. Benedict, E. Trzop, J. Sokolow, B. Fournier, Y. Chen, J. A. Kalinowski, T. Graber, R. Henning, P. Coppens, J. Phys. Chem. A 2012, 116, 3359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1SqsLc%3D&md5=f14678fd5dc6fea9d98d0672a8859625CAS | 22385365PubMed |

[42]  G. B. Shaw, C. D. Grant, H. Shirota, E. W. Castner, G. J. Meyer, L. X. Chen, J. Am. Chem. Soc. 2007, 129, 2147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVGmsQ%3D%3D&md5=9ca3b982f8181a416144971e5c24e191CAS | 17256860PubMed |

[43]  K. A. Vinogradova, V. F. Plyusnin, A. S. Kupryakov, M. I. Rakhmanova, N. V. Pervukhina, D. Y. Naumov, L. A. Sheludyakova, E. B. Nikolaenkova, V. P. Krivopalov, M. B. Bushuev, Dalton Trans. 2014, 43, 2953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOmurc%3D&md5=712f84d83cbbd56eed06a3835dddeec3CAS | 24346321PubMed |

[44]  D. M. Zink, D. Volz, T. Baumann, M. Mydlak, H. Flügge, J. Friedrichs, M. Nieger, S. Bräse, Chem. Mater. 2013, 25, 4471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CgtrjE&md5=d92697f10c7798cd8701e446180ed7aaCAS |

[45]  C. Femoni, S. Muzzioli, A. Palazzi, S. Stagni, S. Zacchini, F. Monti, G. Accorsi, M. Bolognesi, N. Armaroli, M. Massi, G. Valenti, M. Marcaccio, Dalton Trans. 2013, 42, 997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOrtb%2FF&md5=b6ad2d0e6205843d398e98530f65ebc9CAS | 23108182PubMed |

[46]  A. Kaeser, M. Mohankumar, J. Mohanraj, F. Monti, M. Holler, J.-J. Cid, O. Moudam, I. Nierengarten, L. Karmazin-Brelot, C. Duhayon, B. Delavaux-Nicot, N. Armaroli, J.-F. Nierengarten, Inorg. Chem. 2013, 52, 12140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGrs7nK&md5=d5c5091d3aa77f8d8eecf480750e5feeCAS | 24083360PubMed |

[47]  A. J. M. Miller, J. L. Dempsey, J. C. Peters, Inorg. Chem. 2007, 46, 7244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVCrs70%3D&md5=eaa6ded1d1adbb22abf5bf0ad115b6caCAS |

[48]  X.-L. Xin, M. Chen, Y.-b. Ai, F.-l. Yang, X.-L. Li, F. Li, Inorg. Chem. 2014, 53, 2922.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFWhsLw%3D&md5=ff7653d556c108b87f1d8df3ec2e31e8CAS | 24559388PubMed |

[49]  D. M. Zink, T. Baumann, J. Friedrichs, M. Nieger, S. Bräse, Inorg. Chem. 2013, 52, 13509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgsrzK&md5=99ea0251b554bb28f1fcc641a5425f93CAS | 24205840PubMed |

[50]  B. Bozic-Weber, V. Chaurin, E. C. Constable, C. E. Housecroft, M. Meuwly, M. Neuburger, J. A. Rudd, E. Schonhofer, L. Siegfried, Dalton Trans. 2012, 41, 14157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1aku7jK&md5=9c5006527620c8587e23db3d4997b5ebCAS | 23034733PubMed |

[51]  B. Bozic-Weber, E. C. Constable, C. E. Housecroft, M. Neuburger, J. R. Price, Dalton Trans. 2010, 39, 3585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKgtLk%3D&md5=65952557a261e460e02e7a8edd34f288CAS | 20354612PubMed |

[52]  C. L. Linfoot, P. Richardson, T. E. Hewat, O. Moudam, M. M. Forde, A. Collins, F. White, N. Robertson, Dalton Trans. 2010, 39, 8945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygtbfI&md5=24a6e846c0fbe1cdb46ca2cbb214857fCAS | 20859569PubMed |