Skip to main content
Log in

Genetic variation in Spilocaea oleagina populations from New Zealand olive groves

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Olive leaf spot caused by the fungus, Spilocaea oleagina, is the most important leaf disease of olives in many olive-growing regions worldwide with yield losses of up to 20%. The genetic structure of S. oleagina populations was investigated with universally primed-polymerase chain reaction (UP-PCR) techniques. Ninety-eight S. oleagina isolates were collected from 12 known and 4 unknown cultivars from olive groves in five New Zealand regions. UP-PCR profiles based on 159 markers were used to compute genetic distances between pairs of individuals. Low levels of gene and genotypic diversity were detected in all populations, with 76% of the loci being polymorphic and with Nei’s diversity indices ranging from 0.0234 to 0.1393. Analysis of molecular variance showed small but significant (P = 0.001) variations among regions, although most of the molecular variability (87%) was found within populations. Clustered analysis showed no evidence of grouping according to geographic origin of the isolates. The low level of genetic diversity found within and among populations indicates that reproduction for this fungus is predominantly by asexual means and that any effective control strategies are likely to be useful in all or most New Zealand olive groves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernès J (1923) Les parasites de l’olivier au congrès oleicole de Nice. Progress in Agriculture and Viticulture 80, 518–524.

    Google Scholar 

  • Bulat SA, Lübeck M, Mironenko N, Jensen DF, Lübeck PS (1998) UP-PCR analysis and ITS1 ribotyping of strains of Trichoderma and Gliocladium. Mycological Research 102, 933–943. doi:10.1017/S0953756297005686

    Article  CAS  Google Scholar 

  • Burdon JJ, Roelfs AP (1985) The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis. Phytopathology 75, 1068–1073. doi:10.1094/Phyto-75-1068

    Article  CAS  Google Scholar 

  • Crawford MS, Chumley FG, Weaver CG, Valent B (1986) Characterization of the heterokaryotic and vegetative diploid phases of Magnaporthe grisea. Genetics 114, 1111–1129.

    PubMed  CAS  Google Scholar 

  • Cumagun CJR, Hockenhull J, Lübeck M (2000) Characterization of Trichoderma isolates from Philippine rice fields by UP-PCR and rDNA-ITS1 analysis: identification of UP-PCR markers. Journal of Phytopathology 148, 109–115. doi:10.1046/j.1439-0434.2000.00467.x

    Article  CAS  Google Scholar 

  • De Marzo L, Frisullo S, Rossi V (1993) Possible dissemination of Spilocaea oleagina conidia by insects (Ectopsocus briggsi). EPPO Bulletin 23, 389–391. doi: 10.1111/j.1365-2338.1993.tb01341.x

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131, 479–491.

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (1997) Arlequin version 3.01: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.

    Google Scholar 

  • Gonzàlez-Lamothe R, Segura R, Trapero A, Baldoni L, Botella MA, Valpuesta V (2002) Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiology Letters 210, 149–155.

    PubMed  Google Scholar 

  • Goodwin SB, Saghai-Maroof MA, Allard RW, Webster RK (1993) Isozyme variation within and among populations of Rhynchosporium secalis in Europe, Australia and the United States. Mycological Research 97, 49–58. doi:10.1016/S0953-7562(09)81112-X

    Article  CAS  Google Scholar 

  • Gouveia MMC, Ribeiro A, Varzea VMP, Rodrigues-Junior CJ (2005) Genetic diversity in Hemileia vastatrix based on RAPD markers. Mycologia 97, 396–404. doi:10.3852/mycologia.97.2.396

    Article  PubMed  CAS  Google Scholar 

  • Graniti A (1993) Olive scab: a review. EPPO Bulletin 23, 377–384. doi:10.1111/j.1365-2338.1993.tb01339.x

    Article  Google Scholar 

  • Guechi A, Girre L (1994) Sources of Cycloconium oleaginum (Cast.) conidia for infection of olive leaves and conditions determining leaf spot disease development in the region of Sètif, Algeria. Mycopathologia 125, 163–171. doi:10.1007/BF01146522

    Article  Google Scholar 

  • Hovmøller MS, Østergård H (1991) Gametic disequilibria between virulence genes in barley powdery mildew populations in relation to selection and recombination. II. Danish observations. Plant Pathology 40, 178–189. doi:10.1111/j.1365-3059.1991.tb02365.x

    Article  Google Scholar 

  • Kohn LM (1995) The clonal dynamic in wild and agricultural plant-pathogen populations. Canadian Journal of Botany 73, 1231–1240. doi:10.1139/b95-383

    Article  Google Scholar 

  • Laviola C (1968) Aspetti biologici ed epifitologici disease Spilocaea oleagina (Cast.) Hugh. in Italia. Annali Facoltura Agraria University, Bari 22, 345–360.

    Google Scholar 

  • Lops F, Frisullo S, Rossi V (1993) Studies on the spread of the olive scab pathogen Spilocaea oleagina. EPPO Bulletin 23, 385–387. doi:10.1111/j.1365-2338.1993.tb01340.x

    Article  Google Scholar 

  • Lübeck PS, Alekhina IA, Lübeck M, Bulat SA (1998) UP-PCR genotyping and rDNA analysis of Ascochyta pisi Lib. Journal of Phytopathology 146, 51–55.

    Article  Google Scholar 

  • Lübeck M, Alekhina IA, Lübeck PS, Jensen DF, Bulat SA (1999) Delineation of Trichoderma harzianum into two genotypic groups by a highly robust fingerprinting method, UP-PCR, and UP-PCR product cross-hybridization. Mycological Research 103, 289–298. doi:10.1017/S0953756298007126

    Article  Google Scholar 

  • MacDonald AJ, Walter M, Trought M, Frampton CM, Burnip G (2000) Survey of olive leaf spot in New Zealand. New Zealand Plant Protection 53, 126–132.

    Google Scholar 

  • MacHardy WE (1996) ‘Apple scab: biology, epidemiology, and management.’ (The American Phytopathological Society Press: St Paul, MN)

    Google Scholar 

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annual Review of Phytopathology 31, 353–373. doi:10.1146/annurev. py.31.090193.002033

    Article  Google Scholar 

  • McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87, 448–453. doi:10.1094/PHYTO.1997.87.4.448

    Article  PubMed  CAS  Google Scholar 

  • McDonald BA, Pettway RE, Chen RS, Boeger JM, Martinez JP (1995) The population genetics of Septoria tritici (teleomorph Mycosphaerella graminicola). Canadian Journal of Botany 73, 292–301. doi:10.1139/b95-259

    Article  Google Scholar 

  • Miller HN (1949) Development of the leaf spot fungus in the olive leaf. Phytopathology 39, 403–410.

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323. doi:10.1073/pnas.70.12.3321

    Article  PubMed  CAS  Google Scholar 

  • Newman PL, Owen H (1985) Evidence of asexual recombination in Rhynchosporium secalis. Plant Pathology 34, 338–340. doi:10.1111/j.1365-3059.1985.tb01370.x

    Article  Google Scholar 

  • Obanor FO, Walter M, Jones EE, Jaspers MV (2008) Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. European Journal of Plant Pathology 120, 211–222. doi:10.1007/s10658-007-9209-6

    Article  Google Scholar 

  • Pottinger B, Stewart A, Carpenter M, Ridgway HJ (2002) Low genetic variation detected in New Zealand populations of Phaeomoniella chlamydospora. Phytopathologia Mediterranea 41, 199–211.

    CAS  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49, 1280–1283. doi:10.2307/2410454

    Article  Google Scholar 

  • Shabi E, Birger R, Lavee S, Klein I (1994) Leaf spot (Spilocaea oleaginea) on olive in Israel and its control. Acta Horticulturae 356, 390–394.

    Google Scholar 

  • Slatkin M (1987) Gene flow and geographic structure of natural populations. Science 236, 787–792. doi:10.1126/science.3576198

    Article  PubMed  CAS  Google Scholar 

  • Tegli S, Santilli E, Bertelli E, Surico G (2000) Genetic variation within Phaeoacremonium aleophilum and Phaeoacremonium chlamydosporum in Italy. Phytopathologia Mediterranea 39, 156–161.

    Google Scholar 

  • Tenerini I (1964) Researches on the biology and epidemiology of Spilocaea oleagina, the causal agent of the olive scab disease. Phytopathologia Mediterranea 3, 63–70.

    Google Scholar 

  • Tenzer I, Gessler C (1997) Subdivision and genetic structure of four populations of Venturia inaequalis in Switzerland. European Journal of Plant Pathology 103, 565–571. doi:10.1023/A:1008636913211

    Article  Google Scholar 

  • Teviotdale BL, Sibbett GS (1995) Consistent annual treatment helps future olive leaf spot control. California Agriculture 49, 27–32. doi: 10.3733/ca. v049n05p27

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6535. doi:10.1093/nar/18.22.6531

    Article  PubMed  CAS  Google Scholar 

  • Wilson EE, Miller HN (1949) Olive leaf spot and its control with fungicides. Hilgardia 19, 1–24.

    Google Scholar 

  • Wilson EE, Ogawa JM (1979) ‘Fungal, bacterial, and certain nonparasitic diseases of fruit and nut crops in California.’ (Division of Agricultural Science, University of California: Berkeley) 190 pp.

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Annals of Eugenics 15, 323–354.

    Google Scholar 

  • Yeh C, Yang RC, Boyle T (1999) POPGENE version 1.32. Microsoft Windows-based Freeware for population genetic analysis. Available at http://www.ualberta.ca/~fyeh/index.htm [Verified 29 June 2010]

  • Zeigler RS, Cuoc LX, Scott RP, Bernardo MA, Chen DH, Valent B, Nelson RJ (1995) The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology 85, 443–451. doi:10.1094/Phyto-85-443

    Article  Google Scholar 

  • Zeigler RS, Scott RP, Leung H, Bordeos AA, Kumar J, Nelson RJ (1997) Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopathology 87, 284–294. doi:10.1094/PHYTO.1997.87.3.284

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Blackwell M (2002) Population structure of dogwood anthracnose fungus. Phytopathology 92, 1276–1283. doi:10.1094/PHYTO.2002. 92.12.1276

    Article  PubMed  CAS  Google Scholar 

  • Zuccon A, Zuccon D (2008) MrEnt version 2. Program distributed by the authors. Available at http://www.mrent.org [Verified 29 April 2010]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friday O. Obanor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obanor, F.O., Walter, M., Jones, E.E. et al. Genetic variation in Spilocaea oleagina populations from New Zealand olive groves. Australasian Plant Pathology 39, 508–516 (2010). https://doi.org/10.1071/AP10013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP10013

Additional keywords

Navigation