We investigate the optical response of a charge-transfer complex in a condensed phase driven by an external laser field. Our model includes an instantaneous short-range Coulomb interaction and a local optical vibrational mode described by the Holstein–Hubbard (HH) model. Although characterization of the HH model for a bulk system has typically been conducted using a complex phase diagram, this approach is not sufficient for investigations of dynamical behavior at finite temperature, in particular for studies of nonlinear optical properties, where the time irreversibility of the dynamics that arises from the environment becomes significant. We therefore include heat baths with infinite heat capacity in the model to introduce thermal effects characterized by fluctuation and dissipation to the system dynamics. By reducing the number of degrees of freedom of the heat baths, we derive numerically “exact” hierarchical equations of motion for the reduced density matrix of the HH system. As demonstrations, we calculate the optical response of the system in two- and four-site cases under external electric fields. The results indicate that the effective strength of the system–bath coupling becomes large as the number of sites increases. Excitation of electrons promotes the conductivity when the Coulomb repulsion is equivalent to or dominates the electron–phonon coupling, whereas excitation of optical vibrations always suppresses the conductivity.

1.
G.
Saito
and
Y.
Yoshida
, “
Development of conductive organic molecular assemblies: Organic metals, superconductors, and exotic functional materials
,”
Bull. Chem. Soc. Jpn.
80
,
1
(
2007
).
2.
O.
Gunnarsson
, “
Superconductivity in fullerides
,”
Rev. Mod. Phys.
69
,
575
(
1997
).
3.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
,
325
342
(
1959
).
4.
T.
Holstein
, “
Studies of polaron motion: Part II. The ‘small’ polaron
,”
Ann. Phys.
8
,
343
389
(
1959
).
5.
G.
Beni
,
P.
Pincus
, and
J.
Kanamori
, “
Low-temperature properties of the one-dimensional polaron band. I. Extreme-band-narrowing regime
,”
Phys. Rev. B
10
,
1896
(
1974
).
6.
S.
Aubry
, “
Exact results and conjectures on the adiabatic Holstein-Hubbard model at large electron-phonon coupling
,” in
The Hubbard Model
(
Springer
,
1995
), pp.
125
143
.
7.
Y.
Takada
and
A.
Chatterjee
, “
Possibility of a metallic phase in the charge-density-wave–spin-density-wave crossover region in the one-dimensional Hubbard-Holstein model at half filling
,”
Phys. Rev. B
67
,
081102
(
2003
).
8.
S.
Sykora
,
A.
Hübsch
, and
K. W.
Becker
, “
Coexistence of superconductivity and charge-density waves in a two-dimensional Holstein model at half-filling
,”
EPL
85
,
57003
(
2009
).
9.
T.
Miyao
, “
Ground state properties of the Holstein–Hubbard model
,”
Ann. Henri Poincare
19
,
2543
2555
(
2018
).
10.
M.
Berciu
, “
Exact Green’s functions for the two-site Hubbard-Holstein Hamiltonian
,”
Phys. Rev. B
75
,
081101
(
2007
).
11.
T.
Yamada
,
J.
Ishizuka
, and
Y.
Ōno
, “
Metal–insulator transition and superconductivity in the two-orbital Hubbard–Holstein model for iron-based superconductors
,”
J. Phys. Soc. Jpn.
83
,
044711
(
2014
).
12.
A. F.
Hebard
,
M. J.
Rosseinsky
,
R. C.
Haddon
,
D. W.
Murphy
,
S. H.
Glarum
,
T. T. M.
Palstra
,
A. P.
Ramirez
, and
A. R.
Kortan
, “
Superconductivity at 18 K in potassium-doped C60
,”
Nature
350
,
600
601
(
1991
).
13.
M. J.
Rosseinsky
,
A. P.
Ramirez
,
S. H.
Glarum
,
D. W.
Murphy
,
R. C.
Haddon
,
A. F.
Hebard
,
T. T. M.
Palstra
,
A. R.
Kortan
,
S. M.
Zahurak
, and
A. V.
Makhija
, “
Superconductivity at 28 K in RbxC60
,”
Phys. Rev. Lett.
66
,
2830
(
1991
).
14.
T. T. M.
Palstra
,
O.
Zhou
,
Y.
Iwasa
,
P. E.
Sulewski
,
R. M.
Fleming
, and
B. R.
Zegarski
, “
Superconductivity at 40 K in cesium doped C60
,”
Solid State Commun.
93
,
327
330
(
1995
).
15.
A.
Lanzara
,
P. V.
Bogdanov
,
X. J.
Zhou
,
S. A.
Kellar
,
D. L.
Feng
,
E. D.
Lu
,
T.
Yoshida
,
H.
Eisaki
,
A.
Fujimori
,
K.
Kishio
 et al, “
Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors
,”
Nature
412
,
510
514
(
2001
).
16.
Z. B.
Huang
,
W.
Hanke
,
E.
Arrigoni
, and
D. J.
Scalapino
, “
Electron-phonon vertex in the two-dimensional one-band Hubbard model
,”
Phys. Rev. B
68
,
220507
(
2003
).
17.
S.
Johnston
,
I. M.
Vishik
,
W. S.
Lee
,
F.
Schmitt
,
S.
Uchida
,
K.
Fujita
,
S.
Ishida
,
N.
Nagaosa
,
Z. X.
Shen
, and
T. P.
Devereaux
, “
Evidence for the importance of extended Coulomb interactions and forward scattering in cuprate superconductors
,”
Phys. Rev. Lett.
108
,
166404
(
2012
).
18.
S.
Ishihara
and
N.
Nagaosa
, “
Interplay of electron-phonon interaction and electron correlation in high-temperature superconductivity
,”
Phys. Rev. B
69
,
144520
(
2004
).
19.
A. S.
Mishchenko
,
N.
Nagaosa
,
Z.-X.
Shen
,
G.
De Filippis
,
V.
Cataudella
,
T. P.
Devereaux
,
C.
Bernhard
,
K. W.
Kim
, and
J.
Zaanen
, “
Charge dynamics of doped holes in high TC cuprate superconductors: A clue from optical conductivity
,”
Phys. Rev. Lett.
100
,
166401
(
2008
).
20.
G.
De Filippis
,
V.
Cataudella
,
A. S.
Mishchenko
,
C. A.
Perroni
, and
N.
Nagaosa
, “
Optical conductivity of a doped Mott insulator: The interplay between correlation and electron-phonon interaction
,”
Phys. Rev. B
80
,
195104
(
2009
).
21.
Y.
Takada
, “
Superconductivity in the half-filled Hubbard-Holstein model in the antiadiabatic region
,”
J. Phys. Soc. Jpn.
65
,
1544
1547
(
1996
).
22.
A.
Chatterjee
, “
Existence of an intermediate metallic phase at the SDW-CDW crossover region in the one-dimensional Holstein-Hubbard model at half-filling
,”
Adv. Condens. Matter Phys.
2010
,
350787
.
23.
M.
Tezuka
,
R.
Arita
, and
H.
Aoki
, “
Phase diagram for the one-dimensional Hubbard-Holstein model: A density-matrix renormalization group study
,”
Phys. Rev. B
76
,
155114
(
2007
).
24.
W.
Von der Linden
,
E.
Berger
, and
P.
Valášek
, “
The Hubbard-Holstein model
,”
J. Low Temp. Phys.
99
,
517
525
(
1995
).
25.
A.
Macridin
,
G. A.
Sawatzky
, and
M.
Jarrell
, “
Two-dimensional Hubbard-Holstein bipolaron
,”
Phys. Rev. B
69
,
245111
(
2004
).
26.
R. T.
Clay
and
R. P.
Hardikar
, “
Intermediate phase of the one dimensional half-filled Hubbard-Holstein model
,”
Phys. Rev. Lett.
95
,
096401
(
2005
).
27.
E. A.
Nowadnick
,
S.
Johnston
,
B.
Moritz
,
R. T.
Scalettar
, and
T. P.
Devereaux
, “
Competition between antiferromagnetic and charge-density-wave order in the half-filled Hubbard-Holstein model
,”
Phys. Rev. Lett.
109
,
246404
(
2012
).
28.
S.
Johnston
,
E. A.
Nowadnick
,
Y. F.
Kung
,
B.
Moritz
,
R. T.
Scalettar
, and
T. P.
Devereaux
, “
Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model
,”
Phys. Rev. B
87
,
235133
(
2013
).
29.
T.
Ohgoe
and
M.
Imada
, “
Competition among superconducting, antiferromagnetic, and charge orders with intervention by phase separation in the 2D Holstein-Hubbard model
,”
Phys. Rev. Lett.
119
,
197001
(
2017
).
30.
M.
Weber
and
M.
Hohenadler
, “
Two-dimensional Holstein-Hubbard model: Critical temperature, Ising universality, and bipolaron liquid
,”
Phys. Rev. B
98
,
085405
(
2018
).
31.
N.
Tsuji
,
T.
Oka
, and
H.
Aoki
, “
Nonequilibrium steady state of photoexcited correlated electrons in the presence of dissipation
,”
Phys. Rev. Lett.
103
,
047403
(
2009
).
32.
M.
Mitrano
,
A.
Cantaluppi
,
D.
Nicoletti
,
S.
Kaiser
,
A.
Perucchi
,
S.
Lupi
,
P.
Di Pietro
,
D.
Pontiroli
,
M.
Riccò
,
S. R.
Clark
 et al, “
Possible light-induced superconductivity in K3C60 at high temperature
,”
Nature
530
,
461
464
(
2016
).
33.
G.
Mazza
and
A.
Georges
, “
Nonequilibrium superconductivity in driven alkali-doped fullerides
,”
Phys. Rev. B
96
,
064515
(
2017
).
34.
M. A.
Sentef
,
A. F.
Kemper
,
A.
Georges
, and
C.
Kollath
, “
Theory of light-enhanced phonon-mediated superconductivity
,”
Phys. Rev. B
93
,
144506
(
2016
).
35.
D. M.
Kennes
,
E. Y.
Wilner
,
D. R.
Reichman
, and
A. J.
Millis
, “
Transient superconductivity from electronic squeezing of optically pumped phonons
,”
Nat. Phys.
13
,
479
(
2017
).
36.
T.
Kaneko
,
T.
Shirakawa
,
S.
Sorella
, and
S.
Yunoki
, “
Photoinduced η pairing in the Hubbard model
,”
Phys. Rev. Lett.
122
,
077002
(
2019
).
37.
K.
Ido
,
T.
Ohgoe
, and
M.
Imada
, “
Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation
,”
Sci. Adv.
3
,
e1700718
(
2017
).
38.
M.
Kim
,
Y.
Nomura
,
M.
Ferrero
,
P.
Seth
,
O.
Parcollet
, and
A.
Georges
, “
Enhancing superconductivity in A3C60 fullerides
,”
Phys. Rev. B
94
,
155152
(
2016
).
39.
P.
Werner
and
M.
Eckstein
, “
Field-induced polaron formation in the Holstein-Hubbard model
,”
Europhys. Lett.
109
,
37002
(
2015
).
40.
D.
Golež
,
J.
Bonča
,
L.
Vidmar
, and
S. A.
Trugman
, “
Relaxation dynamics of the Holstein polaron
,”
Phys. Rev. Lett.
109
,
236402
(
2012
).
41.
A.
Cantaluppi
,
M.
Buzzi
,
G.
Jotzu
,
D.
Nicoletti
,
M.
Mitrano
,
D.
Pontiroli
,
M.
Riccò
,
A.
Perucchi
,
P.
Di Pietro
, and
A.
Cavalleri
, “
Pressure tuning of light-induced superconductivity in K3C60
,”
Nat. Phys.
14
,
837
841
(
2018
).
42.
D.
Nicoletti
,
E.
Casandruc
,
D.
Fu
,
P.
Giraldo-Gallo
,
I. R.
Fisher
, and
A.
Cavalleri
, “
Anomalous relaxation kinetics and charge-density-wave correlations in underdoped BaPb1−xBixO3
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
9020
9025
(
2017
).
43.
R.
Mankowsky
,
M.
Fechner
,
M.
Först
,
A.
von Hoegen
,
J.
Porras
,
T.
Loew
,
G. L.
Dakovski
,
M.
Seaberg
,
S.
Möller
,
G.
Coslovich
 et al, “
Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48
,”
Struct. Dyn.
4
,
044007
(
2017
).
44.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
Singapore
,
2012
).
45.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
, “
Effect of friction on electron transfer in biomolecules
,”
J. Chem. Phys.
83
,
4491
4503
(
1985
).
46.
A.
Ishizaki
and
G. R.
Fleming
, “
Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
17255
(
2009
).
47.
B.
Hein
,
C.
Kreisbeck
,
T.
Kramer
, and
M.
Rodríguez
, “
Modelling of oscillations in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex
,”
New J. Phys.
14
,
023018
(
2012
).
48.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
49.
Y.
Tanimura
, “
Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
50.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
51.
L.
Chen
,
Y.
Zhao
, and
Y.
Tanimura
, “
Dynamics of a one-dimensional holstein polaron with the hierarchical equations of motion approach
,”
J. Phys. Chem. Lett.
6
,
3110
3115
(
2015
).
52.
N.
Zhou
,
L.
Chen
,
Z.
Huang
,
K.
Sun
,
Y.
Tanimura
, and
Y.
Zhao
, “
Fast, accurate simulation of polaron dynamics and multidimensional spectroscopy by multiple Davydov trial states
,”
J. Phys. Chem. A
120
,
1562
1576
(
2016
).
53.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
, “
Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches
,”
J. Chem. Phys.
150
,
184109
(
2019
).
54.
M.
Cainelli
and
Y.
Tanimura
, “
Exciton transfer in organic photovoltaic cells: A role of local and nonlocal electron-phonon interactions in a donor domain
,”
J. Chem. Phys.
154
,
034107
(
2021
).
55.
S.
Ueno
and
Y.
Tanimura
, “
Modeling and simulating the excited-state dynamics of a system with condensed phases: A machine learning approach
,”
J. Chem. Theory Comput.
17
,
3618
(
2021
).
56.
Y.
Tanimura
, “
Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath
,”
Phys. Rev. A
41
,
6676
6687
(
1990
).
57.
M.
Tanaka
and
Y.
Tanimura
, “
Quantum dissipative dynamics of electron transfer reaction system: Nonperturbative hierarchy equations approach
,”
J. Phys. Soc. Jpn.
78
,
073802
(
2009
).
58.
M.
Tanaka
and
Y.
Tanimura
, “
Multistate electron transfer dynamics in the condensed phase: Exact calculations from the reduced hierarchy equations of motion approach
,”
J. Chem. Phys.
132
,
214502
(
2010
).
59.
Y.
Tanimura
, “
Reduced hierarchy equations of motion approach with Drude plus Brownian spectral distribution: Probing electron transfer processes by means of two-dimensional correlation spectroscopy
,”
J. Chem. Phys.
137
,
22A550
(
2012
).
60.
Y.
Tanimura
, “
Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities
,”
J. Chem. Phys.
141
,
044114
(
2014
).
61.
Y.
Tanimura
, “
Real-time and imaginary-time quantum hierarchal Fokker-Planck equations
,”
J. Chem. Phys.
142
,
144110
(
2015
).
62.
H.-D.
Zhang
,
Q.
Qiao
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
, “
Efficient steady-state solver for hierarchical quantum master equations
,”
J. Chem. Phys.
147
,
044105
(
2017
).
63.
G. D.
Mahan
,
Many-Particle Physics
(
Kluwer Academic/Plenum Publishers
,
New York
,
2000
).
64.
Z.
Lenarčič
,
D.
Golež
,
J.
Bonča
, and
P.
Prelovšek
, “
Optical response of highly excited particles in a strongly correlated system
,”
Phys. Rev. B
89
,
125123
(
2014
).
65.
D.
Bergeron
,
V.
Hankevych
,
B.
Kyung
, and
A.-M. S.
Tremblay
, “
Optical and DC conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections
,”
Phys. Rev. B
84
,
085128
(
2011
).
66.
H.
Castella
,
X.
Zotos
, and
P.
Prelovšek
, “
Integrability and ideal conductance at finite temperatures
,”
Phys. Rev. Lett.
74
,
972
(
1995
).
67.
X.
Zotos
and
P.
Prelovšek
, “
Evidence for ideal insulating or conducting state in a one-dimensional integrable system
,”
Phys. Rev. B
53
,
983
(
1996
).
68.
K.
Okumura
and
Y.
Tanimura
, “
Two-time correlation functions of a harmonic system nonbilinearly coupled to a heat bath: Spontaneous Raman spectroscopy
,”
Phys. Rev. E
56
,
2747
2750
(
1997
).
69.
A.
Ishizaki
and
Y.
Tanimura
, “
Modeling vibrational dephasing and energy relaxation of intramolecular anharmonic modes for multidimensional infrared spectroscopies
,”
J. Chem. Phys.
125
,
084501
(
2006
).
70.
C.
Shao
,
T.
Tohyama
,
H.-G.
Luo
, and
H.
Lu
, “
Numerical method to compute optical conductivity based on pump-probe simulations
,”
Phys. Rev. B
93
,
195144
(
2016
).
71.
H.
Matsueda
,
S.
Sota
,
T.
Tohyama
, and
S.
Maekawa
, “
Relaxation dynamics of photocarriers in one-dimensional Mott insulators coupled to phonons
,”
J. Phys. Soc. Jpn.
81
,
013701
(
2011
).
72.
H.
Hashimoto
and
S.
Ishihara
, “
Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model
,”
Phys. Rev. B
96
,
035154
(
2017
).
73.
H.
Seo
,
Y.
Tanaka
, and
S.
Ishihara
, “
Photoinduced collective mode, inhomogeneity, and melting in a charge-order system
,”
Phys. Rev. B
98
,
235150
(
2018
).
74.
K.
Yonemitsu
, “
Theory of photoinduced phase transitions in molecular conductors: Interplay between correlated electrons, lattice phonons and molecular vibrations
,”
Crystals
2
,
56
77
(
2012
).
75.
K.
Nakamura
and
Y.
Tanimura
, “
Hierarchical Schrödinger equations of motion for open quantum dynamics
,”
Phys. Rev. A
98
,
012109
(
2018
).
76.
R.
Borrelli
, “
Density matrix dynamics in twin-formulation: An efficient methodology based on tensor-train representation of reduced equations of motion
,”
J. Chem. Phys.
150
,
234102
(
2019
).
77.
R.
Borrelli
and
S.
Dolgov
, “
Expanding the range of hierarchical equations of motion by tensor-train implementation
,”
J. Phys. Chem. B
125
,
5397
5407
(
2021
).
78.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
, “
Efficient propagation of the hierarchical equations of motion using the matrix product state method
,”
J. Chem. Phys.
148
,
174102
(
2018
).
79.
Y.
Yan
,
M.
Xu
,
T.
Li
, and
Q.
Shi
, “
Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors
,”
J. Chem. Phys.
154
,
194104
(
2021
).
80.
A.
Ishizaki
and
Y.
Tanimura
, “
Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach
,”
J. Phys. Soc. Jpn.
74
,
3131
3134
(
2005
).
81.
J.
Hu
,
M.
Luo
,
F.
Jiang
,
R.-X.
Xu
, and
Y.
Yan
, “
Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems
,”
J. Chem. Phys.
134
,
244106
(
2011
).
You do not currently have access to this content.