Recent experiments on the return to equilibrium of solutions of entangled polymers stretched by extensional flows [Zhou and Schroeder, Phys. Rev. Lett. 120, 267801 (2018)] have highlighted the possible role of the tube model’s two-step mechanism in the process of chain relaxation. In this paper, motivated by these findings, we use a generalized Langevin equation (GLE) to study the time evolution, under linear mixed flow, of the linear dimensions of a single finitely extensible Rouse polymer in a solution of other polymers. Approximating the memory function of the GLE, which contains the details of the interactions of the Rouse polymer with its surroundings, by a power law defined by two parameters, we show that the decay of the chain’s fractional extension in the steady state can be expressed in terms of a linear combination of Mittag-Leffler and generalized Mittag-Leffler functions. For the special cases of elongational flow and steady shear flow, and after adjustment of the parameters in the memory function, our calculated decay curves provide satisfactory fits to the experimental decay curves from the work of Zhou and Schroeder and earlier work of Teixeira et al. [Macromolecules 40, 2461 (2007)]. The non-exponential character of the Mittag-Leffler functions and the consequent absence of characteristic decay constants suggest that melt relaxation may proceed by a sequence of steps with an essentially continuous, rather than discrete, spectrum of timescales.

1.
P.-G.
de Gennes
,
J. Chem. Phys.
55
,
572
(
1971
);
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
New York
,
1986
).
3.
Z.
Wang
,
C. N.
Lam
,
W.-R.
Chen
,
W.
Wang
,
J.
Liu
,
Y.
Liu
,
L.
Porcar
,
C. B.
Stanley
,
Z.
Zhao
,
K.
Hong
, and
Y.
Wang
, “
Fingerprinting molecular relaxation in deformed polymers
,”
Phys. Rev. X
7
,
031003
(
2017
).
4.
T. P.
Lodge
,
N. A.
Rotstein
, and
S.
Prager
, “
Dynamics of Entangled Polymer Liquids: Do Linear Chains Reptate?
,” in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
John Wiley & Sons
,
New York
,
1990
), Vol. 79, pp.
1
132
.
5.
Y.
Zhou
and
C. M.
Schroeder
, “
Dynamically heterogeneous relaxation of entangled polymer chains
,”
Phys. Rev. Lett.
120
,
267801
(
2018
).
6.
R. S.
Graham
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
, “
Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release
,”
J. Rheol.
47
,
1171
(
2003
).
7.
K. S.
Schweizer
and
D. M.
Sussman
, “
A force-level theory of the rheology of entangled rod and chain polymer liquids. I. Tube deformation, microscopic yielding, and the nonlinear elastic limit
,”
J. Chem. Phys.
145
,
214903
(
2016
).
8.
W.
Hess
, “
Self-diffusion and reptation in semidilute polymer solutions
,”
Macromolecules
19
,
1395
(
1986
);
W.
Hess
, “
Tracer diffusion in polymer mixtures
,”
Macromolecules
20
,
2587
(
1987
);
W.
Hess
, “
Generalized Rouse theory for entangled polymeric liquids
,”
Macromolecules
21
,
2620
(
1988
).
9.
J.
Skolnick
,
R.
Yaris
, and
A.
Kolinski
, “
Phenomenological theory of the dynamics of polymer melts. I. Analytic treatment of self-diffusion
,”
J. Chem. Phys.
88
,
1407
(
1988
);
J.
Skolnick
and
R.
Yaris
, “
Phenomenological theory of polymer melts. II. Viscoelastic properties
,”
J. Chem. Phys.
88
,
1418
(
1988
).
10.
M.
Fixman
, “
Chain entanglements. I. Theory
,”
J. Chem. Phys.
89
,
3892
(
1988
);
M.
Fixman
, “
Chain entanglements. II. Numerical results
,”
J. Chem. Phys.
89
,
3912
(
1988
).
11.
T. A.
Kavassalis
and
J.
Noolandi
, “
A new theory of entanglements and dynamics in dense polymer systems
,”
Macromolecules
21
,
2869
(
1988
).
12.
K.
Kawasaki
, “
A note on the mode coupling theory of polymer melt dynamics
,”
Mod. Phys. Lett. B
04
,
913
(
1990
).
13.
R. F.
Loring
, “
Configurational relaxation and diffusion of a flexible polymer in a dynamically disordered medium
,”
J. Chem. Phys.
94
,
1505
(
1991
);
I.
Szleifer
and
R. F.
Loring
, “
A unified theory of the dynamics of linear chain macromolecules: From unentangled to entangled polymer fluids
,”
J. Chem. Phys.
95
,
2080
(
1991
);
I.
Szleifer
,
J. D.
Wilson
, and
R. F.
Loring
, “
Self-consistent theory of polymer dynamics in melts
,”
J. Chem. Phys.
95
,
8474
(
1991
).
14.
J. F.
Douglas
and
J. B.
Hubbard
, “
Semiempirical theory of relaxtion: Concentrated polymer solution dynamics
,”
Macromolecules
24
,
3163
(
1991
).
15.
T. A.
Vilgis
and
U.
Genz
, “
Theory of the dynamics of tagged chains in interacting polymer liquids: General theory
,”
J. Phys. I
4
,
1411
(
1994
).
16.
M.
Guenza
, “
Many chain correlated dynamics in polymer fluids
,”
J. Chem. Phys.
110
,
7574
(
1999
);
M. G.
Guenza
, “
Localization of chain dynamics in entangled polymer melts
,”
Phys. Rev. E
89
,
052603
(
2014
).
17.
K.-S.
Kim
,
S.
Dutta
, and
YS
Jho
, “
Entangled polymer complexes as Higgs phenomena
,”
Soft Matter
11
,
7932
(
2015
).
18.
N.
Ahamad
and
P.
Debnath
, “
Rouse model in crowded environment modeled by ‘diffusing diffusivity’
,”
Physica A
549
,
124335
(
2020
).
19.
K. S.
Schweizer
, “
Microscopic theory of the dynamics of polymeric liquids: General formulation of a mode-mode-coupling approach
,”
J. Chem. Phys.
91
,
5802
(
1989
).
20.
K. S.
Schweizer
,
M.
Fuchs
,
G.
Szamel
,
M.
Guenza
, and
H.
Tang
, “
Polymer-mode-coupling theory of the slow dynamics of entangled macromolecular fluids
,”
Macromol. Theory Simul.
6
,
1037
(
1997
).
21.
N.
Fatkullin
,
R.
Kimmich
, and
H. W.
Weber
, “
Spin-lattice relaxation of polymers: The memory function formalism
,”
Phys. Rev. E
47
,
4600
(
1993
);
N.
Fatkullin
and
R.
Kimmich
,
Nuclear spin-lattice relaxation dispersion and segment diffusion in entangled polymers. Renormalized Rouse formalism
,
J. Chem. Phys.
101
,
822
(
1994
);
N. F.
Fatkullin
,
R.
Kimmich
, and
M.
Kroutieva
, “
The twice-renormalized Rouse formalism of polymer dynamics: Segment diffusion, terminal relaxation, and nuclear spin-lattice relaxation
,”
J. Exp. Theor. Phys.
91
,
150
(
2000
);
R.
Kimmich
and
N.
Fatkullin
, “
Polymer chain dynamics and NMR
,”
Adv. Polym. Sci.
170
,
1
(
2004
).
22.
S.
Chaudhury
and
B. J.
Cherayil
, “
Complex chemical kinetics in single enzyme molecules: Kramers’s model with fractional Gaussian noise
,”
J. Chem. Phys.
125
,
024904
(
2006
).
23.
R.
Sharma
and
B. J.
Cherayil
, “
Polymer melt dynamics: Microscopic roots of fractional viscoelasticity
,”
Phys. Rev. E
81
,
021804
(
2010
).
24.
D.
Panja
, “
Anomalous polymer dynamics is non-Markovian: Memory effects and the generalized Langevin equation formulation
,”
J. Stat. Mech.
2010
P06011
;
S. C.
Weber
,
J. A.
Theriot
, and
A. J.
Spakowitz
, “
Subdiffusive motion of a polymer composed of subdiffusive monomers
,”
Phys. Rev. E
82
,
011913
(
2010
).
25.
T. J.
Lampo
,
N. J.
Kuwada
,
P. A.
Wiggins
, and
A. J.
Spakowitz
, “
Physical modeling of chromosome segregation in Escherichia coli reveals impact of force and DNA relaxation
,”
Biophys. J.
108
,
146
(
2015
).
26.
W.
Zhong
,
D.
Panja
,
G. T.
Barkema
, and
R. C.
Ball
, “
Generalized Langevin equation formulation for anomalous diffusion in the Ising model at the critical temperature
,”
Phys. Rev. E
98
,
012124
(
2018
).
27.
S.
Sharma
and
P.
Biswas
, “
Unusual dynamics of hydration water around motor proteins with long-ranged hydrodynamic fluctuations
,”
Physica A
534
,
122045
(
2019
).
28.
D.
Thonnekottu
and
D.
Chatterjee
, “
CRISPR-Cas9 genome interrogation: A facilitated subdiffusion target search strategy
,”
J. Phys. Chem. B
124
,
3271
(
2020
).
29.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
(
1960
);
R.
Zwanzig
, “
Memory effects in irreversible thermodynamics
,
Phys. Rev.
124
,
983
(
1961
);
H.
Mori
, “
Transport, collective motion, and Brownian motion
,”
Prog. Theor. Phys.
33
,
423
(
1965
).
30.
R. E.
Teixeira
,
A. K.
Dambal
,
D. H.
Richter
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
The individualistic dynamics of entangled DNA in solution
,”
Macromolecules
40
,
2461
(
2007
).
31.
J. S.
Hur
,
E. S. G.
Shaqfeh
,
H. P.
Babcock
, and
S.
Chu
, “
Dynamics and configurational fluctuations of single DNA molecules in linear mixed flows
,”
Phys. Rev. E
66
,
011915
(
2002
).
32.
A.
Dua
and
B. J.
Cherayil
, “
Polymer dynamics in linear mixed flow
,”
J. Chem. Phys.
119
,
11
(
2003
).
33.
R.
Kubo
, “
The fluctuation dissipation theorem
,”
Rep. Prog. Phys.
29
255
(
1966
);
R.
Zwanzig
,
Non-Equilibrium Statistical Mechanics
(
Oxford University Press
,
New York
,
2001
).
34.
K.-W.
Hsiao
,
C.
Sasmal
,
J.
Ravi Prakash
, and
C. M.
Schroeder
, “
Direct observation of DNA dynamics in semidilute solutions in extensional flow
,”
J. Rheol.
61
,
151
(
2017
).
35.
C.
Sasmal
,
K.-W.
Hsiao
,
C. M.
Schroeder
, and
J.
Ravi Prakash
, “
Parameter-free prediction of DNA dynamics in planar extensional flow of semidilute solutions
,”
J. Rheol.
61
,
169
(
2017
).
36.
C. D.
Young
and
C. E.
Sing
, “
Simulation of semidilute polymer solutions in planar extensional flow via conformationally averaged Brownian noise
,”
J. Chem. Phys.
151
,
124907
(
2019
).
37.
P.
Bhattacharyya
and
B. J.
Cherayil
, “
Chain extension of a confined polymer in steady shear flow
,”
J. Chem. Phys.
137
,
194906
(
2012
).
38.
G. D.
Harp
and
B. J.
Berne
, “
Time-correlation functions, memory functions and molecular dynamics
,”
Phys. Rev. A
2
,
975
(
1970
);
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
New York
,
1987
).
39.
B. B.
Mandelbrot
and
J. W.
van Ness
, “
Fractional Brownian motions, fractional noises and applications
,”
SIAM Rev.
10
,
422
(
1968
).
40.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
San Diego
,
1999
).
41.
S.
Okuyama
and
D. W.
Oxtoby
, “
The generalized Smoluchowski equation and non-Markovian dynamics
,”
J. Chem. Phys.
84
,
5824
(
1986
).
42.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
Wiley
,
New York
,
1987
), Vol. 1.
43.
A.
Dua
and
B. J.
Cherayil
, “
Chain dynamics in steady shear flow
,”
J. Chem. Phys.
112
,
19
(
2000
).
44.
Wolfram Research, Inc.
, Mathematica, Version 9.0, Champaign, IL, 2012.
45.
A.
Ghosal
and
B. J.
Cherayil
, “
Polymer extension under flow: A path integral evaluation of the free energy change using the Jarzynski relation
,”
J. Chem. Phys.
144
,
214902
(
2016
);
[PubMed]
A.
Ghosal
and
B. J.
Cherayil
, “
Fluctuation relations for flow-driven trapped colloids and implications for related polymeric systems
,”
Eur. Phys. J. B
92
,
243
(
2019
).
46.
A. V.
Pagare
, “
Stochastic thermodynamics of a finitely extensible polymer in linear mixed flow
,” M.S. thesis,
Indian Institute of Science
,
Bangalore
,
2020
.
47.
WebPlotDigitizer, Version 4.3, 2020, https://automeris.io/WebPlotDigitizer.
48.
D. E.
Smith
,
H. P.
Babcock
, and
S.
Chu
, “
Single-Polymer dynamics in steady shear flow
,”
Science
283
,
1724
(
1999
).
49.
F.
Dyson
, “
A meeting with Enrico Fermi
,”
Nature
427
,
297
(
2004
).
You do not currently have access to this content.