It was demonstrated recently that logical chaotic resonance (LCR) can be observed in a bistable system. In other words, the system can operate robustly as a specific logic gate in an optimal window of chaotic signal intensity. Here, we report that the size of the optimal window of chaotic signal intensity can be remarkably extended by exploiting the constructive interaction of chaotic signal and periodic force, as well as coupling, in a coupled bistable system. In addition, medium-frequency periodic force and an increasing system size can also lead to an improvement in the response speed of logic devices. The results are corroborated by circuit experiments. Taken together, a reliable and rapid-response logic operation can be realized based on periodic force- and array-enhanced LCR.

1.
D.
Guo
,
M.
Perc
,
Y.
Zhang
,
P.
Xu
, and
D.
Yao
, “
Frequency-difference-dependent stochastic resonance in neural systems
,”
Phys. Rev. E
96
(
2
),
022415
(
2017
).
2.
D.
Guo
,
M.
Perc
,
T.
Liu
, and
D.
Yao
, “
Functional importance of noise in neuronal information processing
,”
Europhys. Lett.
124
(
5
),
50001
(
2018
).
3.
M.
Perc
, “
Stochastic resonance on paced genetic regulatory small-world networks: Effects of asymmetric potentials
,”
Eur. Phys. J. B
69
(
1
),
147
153
(
2009
).
4.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
(
1
),
223
287
(
1998
).
5.
L.
Lu
,
Y.
Jia
,
M.
Ge
,
Y.
Xu
, and
A.
Li
, “
Inverse stochastic resonance in Hodgkin–Huxley neural system driven by Gaussian and non-Gaussian colored noises
,”
Nonlinear Dyn.
100
(
1
),
877
889
(
2020
).
6.
J.
Tang
,
X.
Yang
,
J.
Ma
, and
Y.
Jia
, “
Noise effect on persistence of memory in a positive-feedback gene regulatory circuit
,”
Phys. Rev. E
80
(
1
),
011907
(
2009
).
7.
J.
Tang
,
Y.
Jia
,
M.
Yi
,
J.
Ma
, and
J.
Li
, “
Multiplicative-noise-induced coherence resonance via two different mechanisms in bistable neural models
,”
Phys. Rev. E
77
(
6
),
061905
(
2008
).
8.
Y.
Xu
,
Y.
Guo
,
G.
Ren
, and
J.
Ma
, “
Dynamics and stochastic resonance in a thermosensitive neuron
,”
Appl. Math. Comput.
385
,
125427
(
2020
).
9.
Z.
He
and
C.
Yao
, “
The effect of oxygen concentration on the coupled neurons: Rich spiking patterns and synchronization
,”
Sci. China Technol. Sc.
63
(
11
),
2339
2348
(
2020
).
10.
L.
Gammaitoni
, “
Noise limited computational speed
,”
Appl. Phys. Lett.
91
(
22
),
224104
(
2007
).
11.
K.
Murali
,
S.
Sinha
,
W. L.
Ditto
, and
A. R.
Bulsara
, “
Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor
,”
Phys. Rev. Lett.
102
(
10
),
104101
(
2009
).
12.
V.
Kohar
and
S.
Sinha
, “
Noise-assisted morphing of memory and logic function
,”
Phys. Lett. A
376
(
8
),
957
962
(
2012
).
13.
K. P.
Singh
and
S.
Sinha
, “
Enhancement of ‘logical’ responses by noise in a bistable optical system
,”
Phys. Rev. E
83
(
4
),
046219
(
2011
).
14.
M. A. A.
Hafiz
,
L.
Kosuru
, and
M. I.
Younis
, “
Towards electromechanical computation: An alternative approach to realize complex logic circuits
,”
J. Appl. Phys.
120
(
7
),
074501
(
2016
).
15.
P.
Pfeffer
,
F.
Hartmann
,
S.
Höfling
,
M.
Kamp
, and
L.
Worschech
, “
Logical stochastic resonance with a Coulomb-coupled quantum-dot rectifier
,”
Phys. Rev. Appl.
4
(
1
),
014011
(
2015
).
16.
L.
Zhang
,
W.
Zheng
, and
A.
Song
, “
Adaptive logical stochastic resonance in time-delayed synthetic genetic networks
,”
Chaos
28
(
4
),
043117
(
2018
).
17.
A.
Sharma
,
V.
Kohar
,
M. D.
Shrimali
, and
S.
Sinha
, “
Realizing logic gates with time-delayed synthetic genetic networks
,”
Nonlinear Dyn.
76
(
1
),
431
439
(
2014
).
18.
N.
Wang
,
A.
Song
, and
B.
Yang
, “
The effect of time-delayed feedback on logical stochastic resonance
,”
Eur. Phys. J. B
90
(
6
),
117
(
2017
).
19.
A.
Gupta
,
A.
Sohane
,
V.
Kohar
,
K.
Murali
, and
S.
Sinha
, “
Noise-free logical stochastic resonance
,”
Phys. Rev. E
84
(
5
),
055201
(
2011
).
20.
Y.
Yao
, “
Time-varying coupling induced logical stochastic resonance in a periodically driven coupled bistable system
,”
Chin. Phys. B
(
published online
).
21.
M.
Aravind
,
K.
Murali
, and
S.
Sinha
, “
Coupling induced logical stochastic resonance
,”
Phys. Lett. A
382
(
24
),
1581
1585
(
2018
).
22.
H.
Wu
,
H. J.
Jiang
, and
Z. H.
Hou
, “
Array-enhanced logical stochastic resonance in coupled bistable systems
,”
Chin. J. Chem. Phys.
25
(
1
),
70
76
(
2012
).
23.
Z.
Wang
,
Z.
Qiao
,
L.
Zhou
, and
L.
Zhang
, “
Array-enhanced logical stochastic resonance subject to colored noise
,”
Chin. J. Phys.
55
(
2
),
252
259
(
2017
).
24.
N.
Wang
and
A.
Song
, “
Enhanced logical stochastic resonance in synthetic genetic networks
,”
IEEE Trans. Neural Netw. Lear. Syst.
27
(
12
),
2736
2739
(
2016
).
25.
V.
Kohar
,
K.
Murali
, and
S.
Sinha
, “
Enhanced logical stochastic resonance under periodic forcing
,”
Commun. Nonlinear Sci. Numer. Simul.
19
(
8
),
2866
2873
(
2014
).
26.
T. L.
Carroll
and
L. M.
Pecora
, “
Stochastic resonance and crises
,”
Phys. Rev. Lett.
70
(
5
),
576
579
(
1993
).
27.
Y.
Yao
and
J.
Ma
, “
Logical chaotic resonance in a bistable system
,”
Int. J. Bifurcation Chaos
30
(
13
),
2050196
(
2020
).
28.
G.
Cheng
,
W.
Liu
,
R.
Gui
, and
Y.
Yao
, “
Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system
,”
Chaos Solitons Fractals
131
,
109514
(
2020
).
29.
Y.
Yao
,
G.
Cheng
, and
R.
Gui
, “
Periodic and aperiodic force-induced logical stochastic resonance in a bistable system
,”
Chaos
30
(
7
),
073125
(
2020
).
30.
V.
Baysal
,
Z.
Saraç
, and
E.
Yilmaz
, “
Chaotic resonance in Hodgkin–Huxley neuron
,”
Nonlinear Dyn.
97
(
2
),
1275
1285
(
2019
).
You do not currently have access to this content.